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Equivalence of energy, entropy, and thermodynamic potentials in relation to the thermodynamic
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The central theme of this study is the thermodynamic equilibrium of multitemperature gas mixtures. The
presented material is meant to complement and, for certain aspects, to complete a previous contribution of the
author on the subject matter. The analysis begins with a brief introductory survey of the main theoretical
approaches pursued to characterize quantitatively multitemperature equilibria with the intent to emphasize the
discordant findings of these approaches and the diverging opinions they have originated in the literature. The
equilibrium problem is then confronted within the framework of axiomatic thermodynamics. The general
equilibrium principle in its axiomatic form is recalled and the importance of the physical constraints imposed
on the gas mixture in connection with the application of the principle is recognized. A rigorous proof is given
of the equivalence between energy minimization and entropy maximization for the purpose of determining the
equilibrium conditions in multitemperature circumstances and regardless of the active internal constraints.
Moreover, the influence of the kind of internal constraints in establishing the mathematical form of the
equilibrium equations is pointed out and the divergence among the findings of other approaches is thus
explained. The equivalence feature is also considered in relation to the thermodynamic potentials. Evidence is
given that not all thermodynamic potentials possess the equivalence property, i.e., attainment of an extremum,
in conditions of thermodynamic equilibrium. Consistently, mathematical properties relevant to the search of
the extrema of the Legendre transforms are recalled and elaborated upon. A selection rule is formulated that
permits the identification of the thermodynamic potentials possessing the equivalence property. The essential
role played by the internal constraints in the selection procedure is described and fully evidenced in the
subsequent application of the method to two representative cases of equilibrium that occur often in the
applications, namely, in the absence of internal constraints and when energetic freezing prevails.
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[. INTRODUCTION Helmholtz and Gibbs potentials has been considered the cor-
rect procedure to appld,7]; the generalization to multitem-
Multitemperature gas mixtures are important in the studyperature situations was believed implied in the enforcement
of hypersonic flows, nozzle flows, jets and plumes, combusof the constancy of all temperatures together with that of
tion and flames, plasma flows, etc., and are therefore of privolume or pressure, respectively. The widespread acceptance
mary interest in a variety of engineering applications such a8f this approach has been largely favored by the fact that it
planetary-entry  spacecraft design, advanced highleads to .the vanl_shlng of the chemlcal affinities as prescript
temperature propulsion systems, high-enthalpy wind tunnel®f chemical equilibrium even in the presence of different
advanced material processing and manufacturing, and so ofgMPeratures, a result in accordance with and seemingly ob-
In general, the nature of the problems encountered in thyious generalization of that relative to single-temperature gas

mentioned applications requires a thermochemical nonequgg):llt”eih?ﬁet?s (I)tFPeer:] h:rr;:, rl\éloerro ?BS Ir?nonii)%lzgmha\;\ethe
librium description of the gas mixture, but there can be cir- Wi € multitemperatu qurlibrium prot in th
cumstances under which it acquires importance to consid crontext of wreyers@le : thermodynamics.  Their gnalyss,

) A . based on the minimization of the entropy production, does
states of thermodynamic equilibrium that are compatlblen

ith th . f disti dtod ot lead to the vanishing of the chemical affinities but of
with the existence of distinct temperatures and to determing; iy jinear combinations in which the chemical potentials

quant|t<'_at|vely the corresponding state parameters. Dn‘ferenéppear divided by appropriate temperatures. The discrepancy
theoretical approaches have been purs(ese, e.g., Refs. phenveen the results of the two approaches has raised a debate
[1-10 and references thergirfor this purpose, but there o the correct form of a “generalized law of mass action”
does not seem to be common agreement among their fingmd has promoted further investigations of thermodynami-
ings. There are attemp{$,9,1Q to confront the problem cally more traditional nature aimed to reproduce the form of
within a kinetic framework but, expectedly, the preference ofthe law obtained by Morro and Romeo. Thus van de Sanden
the researchers has been devoted to approaches of thermodyd co-workerg5,6], using arguments of classical thermo-
namic character. With regard to the latter, an attentive surveglynamics, started from the second law appropriately re-
of the publishedand unpublishedcontributions on the sub- phrased for multitemperature circumstances and introduced a
ject reveals a manifest disagreement about which state fun¢generalized free energy’[11] whose minimization, keep-
tion should be minimized or maximized to obtain the condi-ing constant all temperatures and volume, yields the sought
tions of equilibrium. Historically, the minimization of the result. Martinez-Sanchd8] followed a statistical thermody-
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namics approach and reproduced Morro and Romeo’s result

via the maximization of the entropy for prescribed volume U=25 Ues(Ses,V.m) =U(SV,m), 1)

and energies of the molecular degrees of freedom of the gas ©

mixture. An attempt to reconcile the two distinct forms of the

generalized law of mass action was r_nade by Qhen gnd Eddy S=> S.s(U.s,V,m.)=S(U,V,m). )

[12], who proposed some theoretical considerations re- €0

lated to openness or isolation of the thermodynamic

(subsystents) to justify the applicability of, respectively, In Egs. (1) and(2), S, U, and m represent the arrays of,

Helmholtz- and Gibbs-potential minimization or entropy respectively, thet I, entropies{S;1,S;p, . . . S, - - -}, the

maximization. >, energies{U;1,Uqs, ... Uy, ...}, and then masses
A contribution to the discussion on the subject was alsdM1,My, .. .}. The reader is referred to R¢fL3] for details

given by the present author in R¢L.3]. The multitempera- relat.ive to definitions and notation adopted in the following

ture equilibrium problem was dealt with within the frame- Sections.

work of the axiomatic thermodynamics developed by Tisza

[14] and Callen15] on the foundations laid down by Gibbs [l. EQUILIBRIUM PRINCIPLE AND CONSTRAINTS

[16] and applied to multitemperature gas mixtures by Na- The principle of thermodynamic equilibrium in its axiom-
politano[17]. Evidence was given that the presumed dlver-atic form was established by Gibig6] on arguments of

gence of the findings of the various approaches is only alo'hysical nature and has been dealt with at length by Tisza
par_ent because the “’_VO forms found for the "?‘_’V _Of mas 14], Callen[15], and Napolitang17]. It affirms[16,17] that
action correspond to differently constrained eqwhpna BOththe values attained at equilibrium by the independent state
forms are recoverable from the correct application of the,, ameters of a thermodynamic system are those that mini-
general principle of energy minimization and entropy maxi-mize the energyEq. (1)] or, equivalently, maximize the en-
mization if the important role played by the physical con- tropy [Eq. (2)] of the system in the domain defined by its
straints imposed on the gas mixture is recognized and approyjrtyal” states that are compatible with the physical con-
priately brought into account. In particular, it was shown thatstraints(Gibbs’ “equations of condition’16]) affecting the

in multitemperature situation&) energy minimization and variations of its independent state parameters. Alternative
entropy maximization are still equivalent for the purpose ofviewpoints and corresponding formulations in line with the
determining the conditions of equilibrium afld) there is no  philosophy of axiomatic thermodynamics can be found in
generalized law of mass action, but the applicable form oRefs.[14, 15, 1§.

the law depends on what kind of internal constraints are ac- An essential feature associated with any state of equilib-
tive in the mixture. The former conclusion, however, wasrium is the existence of a minimum set of constraigta-
reached in a rather applicative manner by showing that theolitano’s “isolation conditions”[17]; see also Ref[16])
same equilibrium equations are obtained via the applicatiothat must be necessarily accounted for in the minimization or
of either energy minimization or entropy maximization to the maximization procedure. In the energetic representatin
particular case when energy redistribution is impeded amongl)], these constraints are expressed by the conservation of
some molecular degrees of freedom. Furthermore, the usentropy, volume, and mass

and features of the thermodynamic potentials for the purpose

of determining the conditions of equilibrium were not elabo- S=8?, 3
rated upon, but only briefly mentioned.
The present work is meant to complement and, for certain V=\a (4)

aspects, to complete Rdfl3]. Its purpose is to consolidate
with a more general proof the equivalence between energy
minimization and entropy maximization in the presence of
multiple temperatures and to address in a more detailed man- ) . )
ner aspects concerning the use of the thermodynamic potefihe superscripa on the right-hand sides of Eq$3)—(5)

m=m2. (5)

tials in such a situation. denotes assigned values of the variables in question; this
The thermodynamic system of interest is a gas mixturéiotation will be retained hereinafter. In the alternative en-
with n chemical componentse€ 1, ... n) in a volumeV.  tropic representatiofiEq. (2)], the prescriptior{Eq. (3)] of

The eth component is present with a mass and possesses the entropy is replaced with the conservation of the energy
. independent molecular degrees of freedomd (

=1,...J].). The degrees of freedom represent the thermo- u=ud (6)
dynamic subsystems and are considered in disequilibrium

with respect to mass and energy excharjd@ Each degree With regard to gas mixtures in thermochemical nonequi-
of freedom has associated an enetly and an entropys.s  librium, additional constraints(Callen’s “internal con-

that depend on each other via the fundamental relatiostraints” [15]) may arise from the physical modalities that
U.5(Ses,V.m,) or S.5(U.5,V,m,.). The independence of govern mass and energy exchanges during the molecular col-
the degrees of freedom implies the additivity of the energiedisions. Ther independent chemical reactions associated with
U.s and the entropieS, ;. The energetic and entropic fun- the species present in the mixture represent an example of
damental relations of the gas mixture in thermochemicabuch constraints; their occurrence restrains the component
nonequilibrium read formally masses to vary according to linear combinations
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r Ill. EQUIVALENCE OF ENERGY MINIMIZATION
m.=m2+ El Eve M., €e=1,...n, 7) AND ENTROPY MAXIMIZATION
pr

The equivalence between energy minimization and en-
of the reaction progress variablés. In Eq. (7), mg, Vyes tropy maximization finds its expression in the equilibrium
andM  are, respectively, the initial mass, stoichiometric co-principle recalled in Sec. Il and is founded upon rigorous
efficient in thexth reaction, and molecular mass of tk mathematical proof. For single-temperature gas mixtures, the
component. The stoichiometric relations specification of the detailed distribution of energy and en-
tropy among the degrees of freedom is not necessary and the
knowledge of the functional dependence between their total
;1 VeeMe=0, «=1,...71, 8 amounts is sufficient for thermodynamic purposes. The fun-

damental relation§10) and(11) simplify to the more famil-

enforce the mass conservation across the chemical reactiol® forms
and permit the convenient disposal of the mass conservation

[Eq. (5)] U=U(SV, &), (13

n

_ — 0_ na
m= 2 me=2, m=m. © S=S(U,V,9), (14)

Thus a rigorous analysis should proceed by considering the

masses as state parameters and the linear combinéficess  whose differentials compatible with the conservation con-
constraint equations. However, much simplification and clarstraints[Eg. (3) or (6) and Eq.(4)] read

ity are achieved by interpreting the linear combinations

as enforcing a change of variables in the set of independent
state parameters and by incorporating them, as such, directly
into the fundamental relations. In this manner, the compo- (dU)S,V:;1 AdE=-T(dSy,y- (15
nent masses lose their prerogative of independence as state

parameters and are replaced with the reaction progress vari-

ables. Every occurrence ofm.” in the functional depen- |n Eq. (15),

dence of energy and entropy can be formally replaced with

the array¢ of ther progress variable&,, &, ...}

r

A= (U108 )sv,ane,, =~ T(0SIE )y v,ai ¢

aF Kk

U=2, Uei(Ses, V. =U(SV. ), (10
’ is the affinity of thexth reaction, given by the linear combi-
nation
8=2, Ss(Ues V. H=S(UV,8). (1D
n
Other typical constraints met in the applications can be the A= v, M _u. (16)
inhibition of a chemical reactiong = £2), the restraint of e=1

the energy {.s=U?2,) distributed over a degree of freedom,
etc. Explicit examples are the lack of chemical reactivity . .
between H and G at standard temperature and pressure on the ~ chemical potentials p.=(U/dMc)s,ai Mo e
the lack of thermalization of the free electrons with neutral= — T(S/dMc)y v.anm , @ssociated with the components,
and ionized species in partially ionized ga§#s. andT=(dU/3S)y ¢=1/(3S/dU)y ¢ is the temperature of the
The internal constraints represent additional restrictiongias mixture. The equivalence between energy minimization
imposed on the independent state parameters. In generalnd entropy maximization is easily understood from Eq.
they appear in the form of mathematical relations (15), which can also be rewritten in the convenient form

¢; (independent state parameter®, j=1,2,...,
(12 (dU)gy+T(dS)y v=0. 17

which supplement the conservation constrajiiis. (3) or (6)

and Eq.(4)]. In this regard, particular attentidi20] should A more formal and detailed proof of E¢L5) has been given

be paid to select the appropriate functional dependence ipy Callen[15].

Eq. (12) according to the chosen thermodynamic representa- The equivalence property holds also for multitemperature
tion. For example, the energetic freezing constrdih;  gas mixtures, although it seems to be not as easily perceived
—U%;=0 reads as such in the entropic scheme, but it musas in the former case. An elegant proof is achieved with the
be interpreted ad).5(S.s5,V,&—U2;=0 in the energetic method of the Lagrange multipliefd4]. The conservation
scheme. This aspect should never be overlooked when petonstraints(3) and (6) play a key role in this case because
forming equilibrium analyses. they introduce in the Lagrangian functions
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(18)
‘C[U] = Z Ue&(SeJaV,O - As (Z Ses — Su) + ’\V(V - Va) + Z ’\j¢j
LX) €8 7
Eqs. (2) and (3)
(19)

L8] =3 5a(Ues, V,€) = A (P Us=U®) + N(V=V*) + 3N,

€8 €8
Eqs. (1) and (6)

whose minimization and maximization lead, respectively, topressed in the literature seem to imply, but the applicable
the conditions of equilibrium, the symmetry necessary forform of the equations varies according to the kind of internal
their equivalence. The differentials @f U] and L[ S] read, constraints active in the gas mixture.
respectively,
IV. EQUIVALENCE PROPERTY AND THERMODYNAMIC
POTENTIALS

dE[U]I% dUas—)\sE& dScs+AydV+ Ej: Ajdey, (20 A. Introductory remarks

When dealing with single-temperature gas mixtures, it is
customary to think that anhabitually useglithermodynamic
_ _ EnLdV "deb: . potentlgl can serve the purpose qf_ f||_1d|ng the CO.n.dItIOI’]S of
d£Ls] ;s dSes )\Ugs dUestAdV 2 Ajdey. (2D equilibrium, i.e., the chemical equilibrium composition, pro-
vided the appropriate couple of state parameters is held con-
stant[21]. The equivalence of Helmholtz-potential, enthalpy,

Equations(20) and(21) can always be turned into each other and Gibbs-potential minimization is enforced, respectively,
by appropriate algebraic manipulation. For example, multi-py the relations

plying Eqg. (20) by — 1/Ag and rearranging gives

(dF)ty=(dH)sp=(dG)1p=(dU)sy - (24
1 1 In Eq. (24), p is the thermodynamic pressure. Relations simi-
T s dﬁ[U]:;S dS.s— Ns ;5 dU.s lar to Eq.(24) exist also for the entropic potentidl22] de-
’ ’ fined as
Ay A
- —dV- — dg;. (22 1
As ; As ¢ cpIS—?U, (25)
The formal coincidence Ny=1/M\g, Ay=—Ay/Ag, =S P v 26)
)\j’ =—\j/\g) between the right-hand sides of E¢&1) and T
(22) yields the linear dependence
1
\PzS—TU—$V. (27)
dL[U]+AgdL[S]=0. (23
They read
Equation(23) is the generalization of Eq17). It proves the (de)yry=(dD)y pr=(d¥) 1 pr=(dSyy  (28)

equivalence between energy minimization and entropy maxi-

mization in multitemperature situations, regardless of the exand enforce the equivalence gf, ®-, andW-potential maxi-
plicit form assumed by the internal constraifitsg. (12)]. mization. Now, inconsistencies arise when the idea is ex-
Thus either the minimization of the LagrangiélB) or the  ported as such to multitemperature situations. The generali-
maximization of the Lagrangiafl9) will return the same zation of the mentioned energetic and entropic potentials to
equilibrium equations. These equations, however, will conthe latter situations is considered, apparently, rather straight-
tain the derivatives of the functiong; with respect to the forward[1,5-7. On the other hand, the minimization of the
independent state parameters in the chosen representationltitemperature counterparts of the Helmholtz and Gibbs
and therefore their mathematical form will depend on thepotentials appears to succeed or {@B] in predicting the
explicit form of the internal constraints. In other words, thereconditions of equilibrium according to the particular problem
is no generalizedin the thermodynamic senstorm of the  being investigated. At the same time, the minimization of
equilibrium equations, and of the law of mass action in parvan de Sanden’s generalized free enef§y6,11 leads to
ticular, that fulfills the task of producing the conditions of equilibrium equations unexpectedly at variance with those
equilibrium irrespective of the constraining occurrences ofobtained from the minimization of the generalized Helmholtz
the case being considered, as the antithetical opinions exand Gibbs potentials. Thus, why does the latter procedure
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fail in some cases? Why do generalized energetic and ersessing the equivalence property be selected and how do the
tropic potentials lead to distinct equilibrium equations, not-internal constraints intervene in the selection process? An-
withstanding the unconditional equivalence of energy andwering is not a straightforward endeavor but requires care-
entropy(Sec. Il))? Whether or not the theoretical argumentsful reconsideration and adequate generalization of estab-
adduced to provide definite answers to these questions alished notions involving, at the same time, mathematical
sufficiently convincing, the applications remains somewhatspects and physical interpretation. The logical way to em-
pervaded by a vague sense of uncertainty and hesif@#n bark on such a task is to revisit some mathematical proper-
In the author’s opinion, equilibrium analyses will inevita- ties of the potentials that lead to answer the posed questions.
bly be plagued by confusion and a lack of clear understand-
ing until it will be realized that the equivalence relatiq@d) B. Some mathematical properties of the Legendre transforms

and (28) reflect only a partial view of a more general dis- . . :
28) yap 9 In mathematical language, the thermodynamic potentials

course and that their extension to multitemperature gas mix-
tures is not as straightforward as hurriedly assumed. Interes re the Legendre transforms of a fundamental reldtiens.

. T : 10) and(11)]. Detailed expositions on the subject have been
ingly enough, the underlying limitations can be made evident ', : .

even in single-temperature circumstances. Taking into acd'ven by T|sza[14], Qallen [.15]’ and Napolitang 17]. The .
count Eqs(15) and(16), the vanishing of the differentials in considerations of this section take advantage and are built

: e upon the exposition of the latter author.
Egs. (24) and (28) generates the chemical equilibrium Consider a functiorf = f(x,, ... x,) of v variables and

equations its derivatives
n
o of
; VKeMelu’E_o’ K—l, R O (29) ui:K:ui(xli e ,XU), |:11 eV (34)
i

which, together with the prescription of the appropriate) oreover, assume that the variationstoft<v) variables
couple of state parametefisubscripts in Eqs24) and(28)],  re affected by (c<t) constraints. After an inessential per-
can be solved for the equilibrium values of theeaction 1 ation, it is always possible to enumerate the variables in
progress variables. On the other hand, it is immediately verig .y way that the constrained ones are groupetrbomg-

fied that the perfectly legitimate potential ing from 1 tot. Thus, in general, the constraints can be

L=U—-A,&=L(S\V, Ay, .. 0E) (30) expressed as

does not attain a minimum when calculated in correspon- Bi(Xy, ... x)=0, j=1,...c. (35

dence to the solution of the syste®9) for the same pre-
scribed entropy and volume. The potentiahttains an ex-
tremum when

The search of the extrema of the functibrwith the con-
straints(35) calls for the Lagrangian function

L[f]=f+j§l \iBi (36)

aL
(&_Al) sv,all §K¢1_ THEVALE )70 3D

and leads to the equations
n

Cc
;1 VeeMept =0, w=2, 32 (X X))+ S xja—ﬁ':o, i=1,...t (37
=1 7 X
The solution provided by Eq$31) and (32) does not coin-
cide with the (chemical, in this cageequilibrium solution Uj(Xq,....%X,)=0, i=t+1,...p. (38
yielded by the systen29). However, under the particular _ L .
circumstance of partially constrained equilibrium in which These equations, the derivative definitigis|. (34)], and the
the reactionk=1 is inhibited, the potentialL becomes Constraint equation$Eq. (35)] constitute a system of 2

equivalent to, for instance, the energybecause in this case +c equations for the variablesx;, thev derivative values

their differentials come to coincide u;, and thec Lagrange multipliersk;. The valuesx?,uf
(i=1,...p) provided by the solution of such a system may
(dL)sv,4,=(dU)sy ¢, (33)  conveniently be referred to as “equilibrium” conditions.

The function f generates 2-1 Legendre transforms.
The supplemental conditiod; = A} enforces the inhibition Among these, the one defined as
of the reactionk=1 in the L-potential representation and
replaces the analogous conditiép= &5 of the energetic rep-
resentatior] 25].

This simple example points out two important aspe@s:
There can be thermodynamic potentials that do not attain adeserves particular attention in connection with the existence
extremum in conditions of equilibrium an@d) the internal  of the constraint¢35). In the g-potential representation the
constraints seem to play a role in conferring the equivalencéirst t derivatives (34) replace their conjugate variables
property to the potentials. Thus, for a given situation of parx; (i=1, ... t) and assume the role of independent vari-
tially constrained equilibrium, how can the potentials pos-ables. The functiomy reads

t
g=f—2l Ui X; (39
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g9=9(Ug, ... UpXes1s - - - Xp) (400  There is no loss of generality in assuming this ordering of
constraints and variables because it can always be arrived at
and yields the derivatives after adequate, and inessential, permutations; what really
matters is that Eq$47) and(48) do not have any variable in
_Jd9 o common. The separation of E@5) into Eqgs.(47) and(48)
T Xi(Ug U Xy, Xy), 1=1 0 makes block-diagondP6] the Jacobian of the constraints
(41
e
79 x °
uiZKzui(ul,...,ut,le,...,xv), i=t+1,...p. (’9_:81) _ 1 erxt
i .
(42) i ] oy 0 ( 9B; )
&X ’ ’
The transform(39) is characterized by the following notice- P (emehx(t-t) (49)
able property[17]: Its extrema compatible with the con-
straints The appearance of two noncommunicating, independent
. _ blocks in Eq.(49) suggests that the equivalence property
u—ur=0, i=1,...4, (43 featured by the transforrt89) may have been passed on to

o . . _ _ the transforms
coincide with the extrema of the functidrcompatible with

the constraint$35). In fact, the search of the extrema of the t
transform (39) with the constraints(43) requires the La- g=f» —E uiX; (50)
grangian function i=1

t t

£lgl=g+ 3, N (ui-uf) (44 g=f- 2 ux (51
i=1 i=
in connection with the constraintgl7) and (48), respec-
tively. As a matter of fact, this turns out to be the case. In
X,)—\ =0, i=1 t particular, the determination of the extrema of the transform
T v B (45) (50) compatibly with the constraints

and produces the equations

Xi(Uqy « oo Uy Xggqy - -

L — e: = 4
(U, + o U Xeogs e X,)=0, i=t+1,...p. (46) U—u=0, 1=1,...¢ (52

The former equationfEq. (45)] yield thet Lagrange muilti- Bi(Xgr i1, - X)=0, j=c'+1,...¢€ (53
pliers A and are therefore inessential. The latter equationgetyrns the same equilibrium conditions obtained by the ex-
[Eq. (46)] coincide with thosdEq. (38)] found previously,  tremization of the functiori compatible with the constraints

although the functional dependence is different because they7) and (48). The same holds for the transfor(d1), but
have been generated within tliepotential representation. \yith the constraints

With the aid of Eq(43), it is easy to verify that Eqg41) and

(46) reduce to identities when the equilibrium values(i Bj(X1, ... Xp)=0, j=1,...¢ (54)
=1,...p) are substituted into them. Thus the functibn

and its transform(39) share the same extrema and, in this u—u'=0, i=t'+1,...1. (55)
sense, they are equivalent for the purpose of finding the equi-

librium conditions. The proof of these equivalence statements starts, respec-

Whether the equivalence property belongs exclusively tdively, from the Lagrangian functions
the transform(39) or it is owned by other transforms of the
function f depends on the possibility of decoupling offered . -, e ~
by the constraint$35). Constraint decoupling occurs when .C[g]—g+i21 A (Ui =y )+-_2,+1 NiBi s (56)
the constraint equations do not share simultaneously all the I=e
constrained variables. As a first step towards the understand- ¢ t
ing o_f this_ im_p_ortant mathgmatical aspect with fgr-regching ﬁ[§]=§+2 ;\jﬂﬁ 2 Xil(ui_uie) (57)
physical significance, consider the circumstance in which the j=1 =t 41
firstt’ (t’'<t) constrained variables appear only in the first

t’ c

¢’ (c¢’<c; ¢'<t’) constraint equations z_and procee(_js along arguments similar to those use_d to estab-
lish the equivalence of the transfor(®9). The algebraic pas-
Bj(X1,...x)=0, j=1,...¢, (47 sages are somewhat lengthy and therefore are omitted.

The recursive application to the constrairigd) of the
while the remaining —t’ constrained variables appear only separability concept permits a straightforward generalization
in the remainingc—c’ (c—c’<t—t') constraint equations of the conclusions drawn for the introductory case and leads

to the definition of an unambiguous selection procedure to
Bij(Xtr 41, .. X)=0, j=c'+1,...¢. (48) single out the transforms of the functidrthat possess the
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1 2 o o e b ematical abstraction and to reintroduce physical significance,
those considerations will be applied in the following sections
to representative cases of equilibrium, namely, in the ab-
, sence of internal constraints and in the presence of energetic
l (6[3]») 0 0 freezing. A more concrete example of the application of the
dz; ideas expounded in this work is illustrated in Re&7] and,
c in a more elaborate manner, in R¢L3], where the Saha
" equation for a two-temperature partially ionized gas is de-
0 (3@') 0 rived for both the constraining circumstances in which the
dz; energy or the entropy, respectively, of the free electron trans-

c lational degree of freedom are frozen.
. There are diverse motivations behind the choice of the

. equilibrium cases dealt with in the following sections. The
. equilibrium analysis relative to the absence of internal con-
straints shows unequivocally that the application of the se-
aB; last lection r_ule describe_d in Sec. IV B_ leads invariably to agree-
((?x.) ment with the equivalence relation®4) and (28) when

: multitemperature mixtures reduce to single-temperature
ones; it also represents a case in which the minimization of
the generalized Helmholtz and Gibbs potentials and the
x; — maximization of van de Sanden’s generalized free energy do
not exclude each other but lead to concording equilibrium
equations. Equilibria in the presence of energetic freezing are
reported to be observed in applications and experimental set-
ug)s (see Ref[5] and Refs.[19, 20 therein; see also Ref.
Cf 4]); the corresponding equilibrium analysis evidences that
the selection rule of Sec. IV B interdicts the use of the gen-
"eralized Helmholtz and Gibbs potentials and favors the ap-
plicability of van de Sanden’s generalized free energy, in
, X accordance with Ref$5, 6], although, at the same time, it
|_=t’ +_1, ... t") and by makmg the L_egendre _transforma- reveals the lack of generality otherwise claimed for the latter
tion with respect taall the variablesx; included in the se- potential. However, before plunging in the mathematical de-
lected block is equivalent to the functidrior the purpose of 4| it is convenient to recall and summarize some basic
finding the equilibr_ium conditions provided that the subset Ofdeﬁnitions[13] in view of the Legendre-transforming opera-
thec”—c’ constraints tions that will be carried out on the fundamental relations
(10) and (12).

1 t " t

FIG. 1. Reduction of the Jacobiag;/dx;).x: to a block-
diagonal form.

equivalence property. The basic step is to operate a reducti
of the JacobiandB; /9x;) . to a block-diagonal form, sche-

matically represented in the diagram of Fig. 1, by inspectio
of the constraint equation&5). Then every transform of

the function f obtained by selecting a blocksay,

Bi(Xvs, - Xe) =0, j=C'+1,...¢" (58 The =1, entropiesS, the volumeV, and ther progress
corresponding to the selected block is replaced with the pre\ganable§§ are the mo_lependent sta_te param_eters}:_ele_
scription of thet”—t’ first derivatives +1+r) in the energetic representation. The first derivatives

of the energy(10) represent, by definitions, the state equa-
u—uf=0, i=t'+1,...t", (59)  tions[14,15,17 of the gas mixture in that scheme. The de-

rivatives taken with respect to the entropies define the corre-
of the functionf. Multiple blocks can be simultaneously se- sponding temperatures
lected for transformation. Thus, lif (b<t) is the number of
blocks in which the Jacobiary;/dx;).x; can be decom- 2]V
posed(see Fig. 1then the number of equivalent transforms Tes= ( 9S.5
is 2°— 1. For example, in the introductory case the Jacobian ¢
reduces tdb=2 blocks[Eq. (49)] and gives rise to the 2
—1=3 equivalent transformg39), (50), and (51). If the  associated with the degrees of freedom of the components.
Jacobian cannot be reduced to a block-diagonal form, theiihe derivative taken with respect to the volume defines the
b=1 and the transforni39) is the only equivalent transform pressure
available.

) for all €6 (60)
all S,z c50 Vo

U
C. Representative cases of equilibrium —p= (W) ; (61
S,
1. Basic definitions

The considerations of Sec. IV B resolve the questions ex?f the gas mixture, which, as a consequence of the energy
pressed at the end of Sec. IV A and give evidence of th&dditivity, turns out to be given by the sub, s p.;s of the
importance that the knowledge of the constraints imposed oRartial pressurep.;= —(dU5/dV)s ; ¢ (Dalton’s law. The
the gas mixture has for the purpose of identifying the equivaderivatives taken with respect to the progress variables define
lent thermodynamic potentials. In order to remove maththe energeti¢28] affinities
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ouU IV B can thus be tested by checking if its application repro-
A= (g) , k=1,...71, (62)  duces the equivalence relatiof®}) and(28) when the inter-
“sVall €, nal constraint§12) are absent.

. . . . The equilibrium analysis in the energetic representation
of the chemical reactions. These affinities are obtained frond;- s from the fundamental relati¢h0). The prescriptions
the linear combinations of entropy[Eq. (3)] and volume[Eg. (4)] are the sole con-

straints €=2) to account for; they are conveniently re-

n IE
A= v M. wes, k=1,...71, (63 phrased here as
e=1 5=1

of the partial chemical potentials ﬂs:% Ses—S?=0, (68)

Mes= (U es/dM)s  vaim,, - —\V_Va=0 (69)
V_ —_ =

Equation(63) is the generalization of E416) in a multitem-

perature context. for formal consistency with Eq.35). The entropies and the
In the entropic representation, tBel . energiedJ assume volume constitute the set of the constrained variables (

the role of independent state parameters together with vol= 2 ¢+ 1). The minimization of the Lagrangian function

ume and progress variables. In this scheme, the state equa-

tions of the gas mixture are given by the first derivatives of _ _ _ _\ya
the entropy(11). They define, respectively, the temperature V] % UeaSes.V.8)— s ;; Ses= S| FA(V=VE)

reciprocals (70)
1 S ilibri [
- :<[?U ) for all €6, (64) leads to the equilibrium equations
€d €
all Uy, o5 Vik T.s—\s=0 for all €3, (73)
the sum of the ratiop,.s/T.s
—p+Ay=0, (72
psﬁ_ S
2 TE(;_(&_V) Uvg, (65 A.=0, «=1,...r. (73

The set of equationé71) enforces the mutual thermal equi-

and the entropi¢28] affinities P
librium of the degrees of freedom: They all share a common

_ S temperature given by the value of the Lagrange multiplier
- K:(E . k=1,...71, (66)  \g, which represents, therefore, the thermal-equilibrium
uvall g, . temperaturel©. The latter is the familiar temperature of the

. . L ) single-temperature mixtures; the supersceiig kept for no-
of the chemical reactions. These affinities are given by th,iignal consistency. The Lagrange multipliey obtained

linear combinations from Eq.(72) represents the equilibrium valpé of the pres-
n I sure. The vanishinfEq. (73)] of the energetic affinitie63),
a1 — Mes _ in turn, characterizes the chemical equilibrium. The simulta-
= M , =1,...r, 6 ' . .
A Zl Ve 5521 Tes K Q neous solution of Eqs(71)—(73), supplemented with Egs.

(68) and (69), provides the conditions of thermodynamic
of the ratios ues/Tes=—(dScs/dM)y_; vaim,, - Ener-  equilibrium of the gas mixture in the absence of internal
getic and entropic affinities are distinct and coexisting therconstraints.
modynamic entities; the necessity to discern between them The identification among the (21*><9—1) thermody-
manifests itself only in multitemperature situations. namic potentials generable by Legendre transforming the en-

ergy (10) of those possessing the equivalence property is

2. Equilibrium in the absence of internal constraints determined by the structure of the Jacobian

roscopic condition that settles in when the physical and dy- I(Bs.Bv) _
namical properties of the molecules participating in the col- A(S\V)
lisions taking place in the gas mixture allow a free

redistribution of mass and energy among, respectively, comef the constraint$68) and(69). The decoupling of the latter
ponents and molecular degrees of freedom. Under these cimakes their Jacobian block-diagonal wiik-2 independent
cumstances, the unrestrained redistribution of energy leads tocks; there are then only?*2 1=3 thermodynamic poten-
the establishment of a common temperature among all theals equivalent to the enerdgit0). The selection of the top-
degrees of freedom or, equivalently, to the complete thermdeft block of the Jacobiari74) calls for the Legendre trans-
equilibrium of the gas mixture. When this condition prevails, formation with respect to all the entropi&;s and, taking
the gas becomes a single-temperature mixture for which Egéto account the temperature definitiof@), it identifies the
(24) and (28) hold. The selection method described in Sec.complete Helmholtz potentigR9]

The absence of internal constraifEg. (12)] is the mac- (
(74

11 - 1|o)
00 - 01
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TABLE I. Equivalent thermodynamic potentials, and associated constraints, generated by Legendre trans-
forming the energy10) in the absence of internal constraints.

Block selected
from diagonal of

Jacobian(74) Potential Constraints
top left qufZ(s T.5Ses T~ Te=0 (for all €0)
) V-Va=0
bottom right H=U+pV 2& S.s—S=0
) p—p®=0
both G=U725 T.sSestpV T.s—Te=0 (for all £0)
) p—p®=0

thermodynamic equilibrium provided by the minimization of
F=U-2 T.,S,=F(T.V,9. (759 the Lagrangian functiofi70) are obtained also from the equi-
«0 librium analysis in the entropic representation. In this repre-
In Eq. (75), T represents the array of .|, temperatures sentation, the analysis is ba_lsed on the fundamental relation
{T11,T12, - .., Tpy, . ..}. Consistently with the chosen se- (1,1)- The entropy cons_eryatlo[tEq. (3) or (68)] is replaced
lection, the entropy constrair68) must be discarded and With the energy prescriptiofEq. (6)], which is consistently
replaced with the prescription of the temperatures rephrased here as

e_
T.s—T°=0 for all ¢,6. (76) Bu=S U~ U=0. 0
The latter equations assume the role of constraifitd; ( €0
=T¢€ for all ¢ 6) in the representation based on the potential L i i
(75). The volume constrain69) is unrelated to the top-left | "€ Maximization of the Lagrangian function
block and therefore must be retained as such. Taking into

account the pressure definitiail), the selection of the _ _ T VIRV
bottom-right block of the Jacobia(74) leads to the enthalpy LLS] ;sssa(ue(;,v,g) M %UE& UF |+ (V=)

(81
H=U+pV=H(Sp,§). (77)
In this case, the entropy constrai68) must be retained and leads to the equilibrium equations
the volume constrain(69) must be replaced with the pre-
scription of the pressure 1 ~\y=0 for all &5 82
TE 1 L
p—p°=0, (78) °

which therefore assumes the role of constrajft={ p®) in E p55+)\, -0 83
the enthalpy representation. The simultaneous selection of S T VO
both the diagonal blocks in the Jacobiéf) leads to the
complete Gibbs potential ZK=O, k=1 .. .1, 84)

qu—g TesSes T PV=G(T,p,$) (79 The set of equation$82) reaffirms the complete thermal

' equilibrium of the degrees of freedom. The Lagrange multi-

and the relevant constraints are E@&6) and (78). Table |  plier Ay, obtained from Eq(83) represents, apart from the

summarizes the identified potentials and the associated cosign, the equilibrium value of the entropipamelesk state
straints. The minimization of any Lagrangian function con-equationZ sp.s/T.s, which, because of the complete ther-
structed from those potentials and their associated constraintsal equilibrium, reduces to the ratjg®/ T®. The vanishing
provides the same equilibrium conditions found from the[Eq. (84)] of the entropic affinitie$67) governs the chemical
minimization of the Lagrangian functiofv0). Thus the ap- equilibrium. In spite of their different mathematical struc-
plication of the selection procedure described in Sec. IV Bture, energetidEq. (63)] and entropic[Eq. (67)] affinities
leads to a result that confirms and generalizes the equivddecome equivalent in the case, and only in this case, of ab-
lences expressed in E@R4). sent internal constraints because the complete thermal equi-
According to the property of equivalence between energyibrium [Egs. (71) and (82)] implies the relationship (44,
and entropy discussed in Sec. lll, the same conditions of Ag=T¢)
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TABLE II. Equivalent thermodynamic potentials, and associated constraints, generated by Legendre
transforming the entropyll) in the absence of internal constraints.

Block selected
from diagonal of

Jacobian86) Potential Constraints
1 1 1
top left =S — =
p ¢=S 25 7 Vs - 7e=0 (for all &2)
V—-V2=0
bottom right q):s_E &sv z U,,—U3=0
€0 Teé €0
e
S P P g
€0 T56 Te
1 pe& 1 1
both =S — U.— < [
v=s 2; Vo EE TV - 3=0 (for all €.5)
e
peé‘_ p_e _ 0
€,0 Teé T
_ 1 derives from the selection of the right-bottom block of the
Ae=75 Ax- (85  Jacobian(86). Its maximization requires the energy con-

straint(80) and the prescription

Therefore, the vanishing of one presupposes the vanishing of o
the other. In conclusion, the set of equatiof@2)—(84), > P P _, (90)
supplemented with Eq€69) and (80), is equivalent to that s Tes T°
composed by Eqs.71)—(73), supplemented with Eq$68)
and(69); they both yield the same equilibrium conditions. of the state equatiof65). The completel potential

The constraint¢69) and (80) are, once again, decoupled
and their Jacobian

1 P 1« pe
Y=5-> T—gueg—E TiV:‘I’(?'Eg T—jg)

d(Bu,By) (1 1 - 1|0) “? ’ ’ 91
4(U,V) (o 0 -~ 01 (86) oD

is found from the selection of both the diagonal blocks of the
features the same structure of the Jacolgigh. Thus there  Jacobian(86) and must be maximized with the constraints
are also three equivalent thermodynamic potentials of thegg) and (90). The potentials equivalent to the entropy are
entropy(11). The completep potential summarized in Table IIl. The equivalences expressed in Eq.
(28) are thus also confirmed and generalized.

1 1
¢=S- Ezﬁ T.s Ues=¢ ?’V'§> (87) 3. Equilibrium with energetic freezing
Energetic freezing refers to the situation in which the en-

is obtained from the selection of the top-left block of theergy exchanges among some degrees of freedom are im-

Jacobian(86) and depends on the arrayT of theX I tem-  paired during the collisions. Under such circumstances, the

perature reciprocal$l/T,;,1/Tq,, ..., 1T, ...}. With its  energies of the “frozen” degrees of freedom are restrained

sign changed, it coincides with the generalized free energyo remain constant. A typical example is the two-temperature

introduced by van de Sanden and co-worké&$]. The po-  equilibrium observed in partially ionized gases. In this case,

tential (87) must be maximized with the volume constraint the exchange of the translational energy of the free electrons

(69) and the prescription of the temperature reciprocals  is practically inhibited because the small electron mass, as
compared to the mass of the heavier species, makes the elas-

1 1 tic collisions an inefficient mechanism for the redistribution
T _FZO for all €,6. (88)  of that energy.
€d The equilibrium analysis in the presence of energetic
) freezing was carried out in Refl13] with the aid of the
that replace the energy constraiB0). The ® potential fundamental relatiori11) and by assuming that, in general,
each component has (<I,) frozen degrees of freedom.

Pes Pes Thus the gas mixture is subjected to thel, internal con-
d=S- V=>0| U, ) 89 : 9 ] e
;i Tes ( gs Tes g) @9 straints




3108 D. GIORDANO PRE 58
U65:U25
— 1 — — 1 — — 0 — 0
for all €;6 of frozen degrees of freedom only.

BN 0 : 1

(92 ABs,BY5,) _ . y _

m— 0 Pj Ve Mephes Pes

It was also shown in Ref13] that, in accordance with the o0 ~ ' 4

equivalence property discussed in Sec. lll, the equilibrium J S S
analysis based on the fundamental relatib®) leads to the 99)

same equilibrium equations. The latter can be summarized as
follows. The nonfrozen degrees of freedom attain mutualn Eq. (98), B', S', andS™ are the arrays of, respectively,
thermal equilibrium, enforced by the (I.—1,) equations  the = I, functions 3.5, the = |, entropies of the energeti-
cally frozen degrees of freedom, i.e., the entropies appearing
in the constraintg97), and theX (I .—1,) entropies of the
nonfrozen degrees of freedom, i.e., the entropies occurring
only in the constrainf95). Horizontal and vertical space is
inserted on the right-hand side of E®8) to outline the
matrices composing the Jacobian; the dimensions of these
matrices can be deduced from the notation on the left-hand
No condition exists on the temperatur€S; of the frozen side of Eq. (98). The presence of the diagonal matrix
degrees of freedom; they differ from the equilibrium tem- 587 4S', the sparse matrixB%9& and the column matrix
peratureT®=1/A, and must be determined from the defini- 98%/9V precludes, in general, the possibility to reduce the
tions (60) or (64) after the set of equilibrium equations has Jacobiar(98) to the block-diagonal form illustrated in Fig. 1.
been solved. Assuming, for simplicity, that the progress variThus, in the case of energetic freezing, there is only one
ables are unconstrained, the chemical equilibrium is gOV(b:]_) thermodynamic potential equivalent to the energy

! Ay=0
TE(S v

for all €;6 of nonfrozen degrees of freedom only.
(93

erned by the vanishing of the entropic affinities

| €

n
‘AK: Zl VKEMEE

6=1

Mes _
Te&

0, k=1,...r. (94

(10) and it is obtained by Legendre transforming with respect
to all the constrained variables

r
Q:U—% TesSestPV— 2_‘,1 Ak =Q(T,p,A). (99

It is important to notice that the incompleteness of the ther-

mal equilibrium[Eq. (93)] due to the energetic freezihgqg.

(92)] of some degrees of freedom excludes, in general, th¢A;,.A4,,

In Eq. (99, A is the array of ther energetic affinities
...}. The minimization of the thermodynamic po-

validity of Eq. (85). The lack of equivalence between ener-tential (99) calls for the prescription of the equilibrium tem-
getic and entropic affinities stems from the fact that the lin-perature for the nonfrozen degrees of freedom

ear combination$67) include also the contributions of the

frozen degrees of freedom whose temperatures cannot be

factorized out of the summations; consequently, EBp)

cannot be arrived at in the case being considered. The ener-

getic affinities[Eqg. (63)] do not vanish at equilibrium but

o e —
assume definite valued, that can be calculated after the set ¢ 1,0 s,

of the equilibrium equations has been solved.

Tes—T°=0

for all €;6 of nonfrozen degrees of freedom only,
(100

distinct temperatures of the energetically frozen
degrees of freedom

In the energetic representation, the constraints imposed on

the gas mixture are the prescriptions of entr¢gy. (68)]
and volumeEq. (69)]

Bs= 25 S.s—S7=0, (95)

By=V—Va=0 (96)

supplemented with the energetic freezing constrajfis.
(92)], which, in this representation, must be interpreted as

:8652 Usﬁ(ssﬁavvg) - Uiﬁz 0

for all €;6 of frozen degrees of freedom only.

97

Thec=2+ EEI_E constraintg95)—(97) affect all the indepen-
dent state parameters=<> .| .+1+r=v) of the energetic
representation. Their Jacobian presents the structure

Tes—Tes=0
for all €;6 of frozen degrees of freedom only,
(102)
of the pressure
p=p®=0, (102
and of the energetic affinities
A—AS=0, «k=1,...r. (103

The constraint$100—(103) relative to theQ)-potential rep-
resentation replace the constraifi®5)—(97) of the energy
scheme. The structure of the Jacobi@8) indicates clearly
that no Helmholtz- or Gibbs-like potential possesses the
equivalence property when energetic freezing prevails. In
general, even the enthalpy does not qualify as an equivalent
potential unless the energetic freezing does not affect the
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TABLE Ill. Equivalent thermodynamic potentials, and associated constraints, generated by Legendre transforming tligGe ety
presence of energetic freezing of the internal degrees of freéBa).

Block selected
from diagonal of
Jacobian(104) Potential Constraints

r
top left Y=U=-, TS5~ > Ak, T.s—T°=0 (for all €; & of nonfrozen DOF
€,0 k=1

T.s—T2s=0 (for all €; & of frozen DOR
A —AS=0 (k=1,...7))

V-V3=0
bottom right H=U+pV 2; S.s—S=0
UH;(SHS,V,g)—Ui;’:O (for all €; & of frozen DOP
p—p°=0
both Q:U—z Tos 555+pv_iAK§K T.s—T¢=0 (for all €; & of nonfrozen DOF
& =1

T.s—TS5=0 (for all €; & of frozen DOR
A= A=0 (k=1,..7)
p—p°=0

translational degrees of freedom. In this regard, it is knowrand the prescription of the enerffgqg. (80)], which, consis-
from statistical thermodynamics that the volume dependencently with the energetic freezing enforced by Ef05), can
of energy and entropy appears only in the contributions obe adapted to read

the translational §=1) degrees of freedom while all the

available models of internal>1) degrees of freedom yield o a foa
volume-independent contributions. Thus, in the particular Buzzﬁ Ues—| U _26 Ues|=0. (107
circumstance in which the translational degrees of freedom © ©

are not energetically frozen, the column mawjg'/ 9V van-
ishes identically and the Jacobia®8) becomes block-
diagonal withb=2 independent blocks

In Eqg. (107), the superscripts nf and f applied to the symbol

2. 5 indicate that the corresponding summations are ex-
tended to, respectively, nonfrozen and frozen degrees of free-
dom. The quantity in parentheses represents physically the

(=1 = =15 ol energy that is available for redistribution among the nonfro-
) : N L zen degrees of freedom. Tlee=2+ X | constraintg105)—
%z S0 T Mg - |0 (107)_involve all the energiesU and the volumeV (t
0 N =2 l.+1); the progress variable§ are unconstrained in
0 . . .o |1 this formulation. The Jacobian of the constraifit85—(107)
presents the structure
(104
Consequently, other two equivalent potentials appear, in ad- — 1 — |+— 0 — o0
dition to the potentia(99), from the selection of the top-left A Y o+
and right-bottom blocks of the Jacobiét04). These poten- ;‘ﬁ:‘ﬂf’;}) A 0
tials and their associated constraints are listed in Table Ill. o .. o N
The identification of the equivalent thermodynamic poten- — o — — o =T
tials generated by Legendre transforming the entr(ily
turns out to be a more simplified task because the frozen (108

energied Eq. (92)] belong to the set of the independent state ; of )
parameters in the entropic formulation. Thus the energeti? EQ- (108, U" andU™ are the arrays of, respectively, the

freezing constraint92) must be retained as such > . energies of the frozen degrees of freedom, i.e., the en-
ergies appearing in the constraint$05, and the X (I,

Bes=Ues—Ug;=0 —1.) energies of the nonfrozen degrees of freedom, i.e., the
energies occurring only in the constraifif7). The central
for all €6 of frozen degrees of freedom only. block is composed by the unit matrigg8/oU"; the frame

(105 around the digit 1 serves to emphasize that each position on
its diagonal constitutes an independent block of the Jacobian
(108). The total number of independent blocks is thus2

By=V—V2=0 (106 + 2. and the number of equivalent thermodynamic poten-

They supplement the prescription of the volupey. (69)]
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TABLE IV. Some representative equivalent thermodynamic potentials, and associated constraints, generated by Legendre transforming
the entropy(11) in the presence of energetic freezing of some degrees of fre€0QR).
Blocks selected
from diagonal of
Jacobian(108) Potential Constraints
1 1 1
nf_q_ nf _— =
top left ¢'=3S Zs TeéUfa T, T¢ 0
(for all €; & of nonfrozen DOF
U.s—U2,=0 (for all €; & of frozen DOR
V—-V&=0
1 f frja
Central (pf:S_Ef U€5 " Ueé‘_ Ua_E UE§ :O
€,0 T55 €,0 €,0
1 1
To To
(for all €; & of frozen DOR
V—-V&=0
1 1 1
top left =S, — Uz i
central e Te T T
(for all €; & of nonfrozen DOF
1 1
Teé T(:(S
(for all €; & of frozen DOR
V—-V2=0
bottom right d=S-> Pay, >t UE(5—<U*"—Ef ia) =0
€0 TE& €06 €,6
U.s—U2,=0 (for all €; & of frozen DOP
3 Po_(3 Pa)’ g
€0 TE(S €0 Te&
1 1 1
top left priog- S oy -3 Py —— ==0
bottom right w  Te a0 Tes Tes T
(for all €; & of nonfrozen DOF
U.s—U2,=0 (for all €; & of frozen DOR
Pes Pes|®
e =< =0
; T55 (; Teé)
central - ¢ 1 Pes fy —lua—Sftya |=
bottom right \If—S—;s T_ﬂsufﬁ_; T65V = Uess—| U ;s es|=0
1 1
To To
(for all €; 6 of frozen DOB
Pes Pes €
— :O
;5 Te& (;5 Te&)
top left 1 Pes 1 1
central ¥=s- 25 T, Y™ 2; T,V T, 70
bottom right (for all €; & of nonfrozen DOF
1 1
To To

(for all €; & of frozen DOR

Pes Pes e_

€,0
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tials amount to 227*<)—1. The most representative ones arethe adequate recognition of the importance of the role played
listed in Table IV together with their associated constraintsby the physical constraints imposed on the gas mixture. The
The structure of the Jacobiaf88) and (104) denies the most relevant feature of multitemperature equilibria is that
equivalence property to Helmholtz and Gibbs-like potentialghe equilibrium equations are not unique but their math-
while the simultaneous selection of the top-left and centrafmatical form is established by the kind of internal con-
blocks of the Jacobiafl08) grants that property to the gen- Straints. This feature resolves and rules out the debate in the
eralized free energy—¢) of van de Sanden and co-workers literature concerned with the existence of a generalized law
[5,6]. Thus the application of the selection method describe@f Mass action. The debate appears to be moot because it
in Sec. IVB reaffirms partially the findings of Ref5] arises from comparing multitemperature equilibria that cor-

reached via arguments of classical thermodynamics. At thEeSpr?nd to.dlf;‘erent constraining circumstances. :
same time, however, it outlines the incorrectness of attachingj The equivaience t_)etw_een energy and_entropy expresseq n
the claimed attribute of generality to van de Sanden’s ther- e equilibrium principle is enforced by rigorous _mathemgtl-
modynamic function because it puts in evidence that such 8a| proof. Conver_sely, not all the t_h_e”.“"dy”am'c po;entlals
function (a) is not the sole potential that can be used énd POSSess the equivalence property,_lt is the kind of internal
inherits the attribute of equivalence from the existence of th onstraints that grants such an attribute to a subset of them.

energetic freezing constraints. Relatively to the latter point, 'he selection met_hod descrlbeq in Sec. I\./ B permits one to
constraining circumstances, for example, entropic freezin ingle out the equivalent potentials according to the specified

[13], cannot be excluded in which the generalized free en- ternal constraints. Th_e appliqation of the se_lection proce-
erg;} loses the equivalence property dure to the case in which multitemperature mixtures reduce

to single-temperature ones reconfirms resfiigs. (24) and
(28)] firmly established in thermodynamics.
V. CONCLUSIONS Finally, it would be interesting to investigate if and how
the role of the internal constraints materializes in the irre-
|,Ygrsible thermodynamics approach to the multitemperature
quilibrium problem and whether or not the same, or at least
oncording, conclusions obtained in the axiomatic thermody-
namics approach could be arrived at. This aspect, however,
has not been considered in this study.

Thermodynamic equilibria settling in multitemperature
gas mixtures have been observed in engineering applicatio
and can be characterized quantitatively in a conceptuall
straightforward manner within the framework of the axiom-
atics thermodynamics initiated by Gib[i6] and brought to
the actual level of conceptual clarity by Tisgad], Callen
[15], and Napolitand17].

The application of the general principle of energy mini-
mization and entropy maximization leads unambiguously to The author is grateful to M. Capitelli and L. Marraffa for
the correct equilibrium equations if it is supplemented withtheir advice, encouragement, and stimulating discussions.

ACKNOWLEDGMENTS

[1] A. V. Potapov, High Temp(USSR 4, 48 (1966. turesT, is equivalent to the maximization of the entropy with

[2] A. Morro and M. Romeo, Nuovo Cimento B, 539 (1986. constant energied,, and therefore it describes the particular

[3] A. Morro and M. Romeo, J. Plasma Phy$8, 41 (1988. circumstance of equilibrium in which the collisions in the

[4] A. Morro and M. Romeo, J. Non-Equilib. Thermodyi8, 339 plasma occur in such a way as to restrain the redistribution of
(1988. the energied),, among the molecular degrees of freedom. See

[5] M. C. M. van de Sandeat al, Phys. Rev. A40, 5273(1989. also Ref[22].

[6] M. C. M. van de Sanden, Doctoral thesis, Technische Univer{12] K. Chen and T. L. Eddy, J. Thermophys. Heat Tran§fe41
siteit Eindhoven, 1991unpublished (1995.

[7] T. L. Eddy and K. Y. Cho, irHTD, Vol. 161: Heat Transferin [13] D. Giordano, inMolecular Physics and Hypersonic Flows
Thermal Plasma Processingdited by K. Etemadi and J. Mo- Vol. 482 of NATO Advanced Study Institute, Series C: Math-
staghimi (American Society of Mechanical Engineers, New ematical and Physical Sciencesdited by M. Capitelli(Klu-
York, 1997, p. 195. wer Academic, Dordrecht, 1996p. 259.

[8] M. Martinez-Sanchezprivate communication [14] L. Tisza, Generalized ThermodynamidMIT Press, Cam-

[9] M. Mitchner and C. H. Kruger,Partially lonized Gases bridge, MA, 1977.

(Wiley, New York, 1973. [15] H. B. Callen, ThermodynamicgWiley, New York, 1963;
[10] J. A. M. van der Mullen and M. C. M. van de Sand@mpub- Thermodynamics and an Introduction to Thermostatistics
lished. (Wiley, New York, 1983.

[11] Conforming to the notation and terminology of R€f5,6], van ~ [16] J. W. Gibbs, Trans. of the Connecticut Acaderly 108
de Sanden’s generalized free energy is the opposite of an en-  (1876); 3, 343(1878 [reprinted in J. W. GibbsThe Scientific
tropic potential obtained by Legendre transformiSgc. IV B Papers of J. Willard Gibbs: Thermodynamid®©x Bow,
the entropy of the considered plasma with respect to all the ~ Woodbridge, CT, 1993.
energiesU,, of its thermodynamic subsystems, i.e., the mo-[17] L. G. Napolitano,Thermodynamique des Sysies Composites
lecular degrees of freedom. For a prescribed volume, the mini-  en Equilibre ou Hors d’Euilibre (Gauthier-Villars Hiteurs,
mization of the generalized free energy with constant tempera-  Paris, 1971



3112 D. GIORDANO PRE 58

[18] H. S. Robertson,Statistical ThermophysicgPrentice-Hall, functions, after the thermodynamicist who introduced them in
Englewood Cliffs, NJ, 1993. 1869 [M. F. Massieu, C. R. Acad. Sch9, 858 (1869; 69,

[19] The author is grateful to H. S. Robertson for bringing these 1057(1869]. The entropic potentials have been dealt with by
examples to his attention. Callen[15] and, for multitemperature gas mixtures, have been

[20] The following remark by CallefiRef.[15], latest referengeis properly discussed by Napolitafib7] in 1971. However, there
particularly appropriate at this point: “In performing formal does not appear to be standard names and notation for them.

manipulations in thermodynamics it is extremely important to 23] M. Dudeck (private communication

make a definite committment to one or the other of these[24] A. E. Mertogul and H. Krier, J. Thermophys. Heat Transer
choices [energetic or entropic representations and corre- 781 (1994,

sponding sets of independent state paramg¢tensl to adhere
rigorously to that choice. A great deal of confusion results
from a vacillation between these two alternatives within a
le:]talsr)problem. (Italics have been introduced by the present are the equilibrium progress variables of the remaining chemi-

[21] Some expositions on the subject, cast in the framework of cal reactions. . . . .
classical thermodynamics, implicitly disagree with this idea[26] The term “block-dlagonal’f Is used her.e ma'“'Y o emphasae
because they distinguish among the potentials in(Ed). ac- the structure of the Jacobian from a visual point of view. The
cording to the kind of procesésobar, isochor, et followed matrices on the diagonal of the right-hand side of @§) and
by the gas mixture to reach the state of equilibrium. The con-  ©f the schematic diagram in Fig. 1 need not be necessarily

[25] The prescribed constan# and &5 are obviously not arbitrary
but depend on each other via, for example, the energetic state
equation AJ=A,(S* V23, &, &, ....&), where £ (k>2)

cept of “process” stays central in this view while the axiom- squqred. o
atic thermodynamics viewpoint relies upon the concept of[27] D. Giordano and M. Capitelli, J. Thermophys. Heat TranSfer
“state.” Reconciliation between the different views requires a 803 (1995.

deeper conceptual analysis of the classical and axiomatic ph{28] See note 39 on p. 280 of R¢fL3].

losophies of thermodynamics. Such an analysis, however, i§29] Complete in the sense that it is generated from the transforma-

irrelevant in the context of the present discussion. tion with respect to all the entropie®. ;. In general, the en-
[22] The entropic potentials are obtained by Legendre transforming  ergy (10) can generate (3¢<—1) Helmholtz-like or Gibbs-

the entropy. These state functions are also known as Massieu like potentials.



