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Equivalence of energy, entropy, and thermodynamic potentials in relation to the thermodynamic
equilibrium of multitemperature gas mixtures

D. Giordano
European Space Research & Technology Center, Noordwijk, The Netherlands

~Received 3 February 1998!

The central theme of this study is the thermodynamic equilibrium of multitemperature gas mixtures. The
presented material is meant to complement and, for certain aspects, to complete a previous contribution of the
author on the subject matter. The analysis begins with a brief introductory survey of the main theoretical
approaches pursued to characterize quantitatively multitemperature equilibria with the intent to emphasize the
discordant findings of these approaches and the diverging opinions they have originated in the literature. The
equilibrium problem is then confronted within the framework of axiomatic thermodynamics. The general
equilibrium principle in its axiomatic form is recalled and the importance of the physical constraints imposed
on the gas mixture in connection with the application of the principle is recognized. A rigorous proof is given
of the equivalence between energy minimization and entropy maximization for the purpose of determining the
equilibrium conditions in multitemperature circumstances and regardless of the active internal constraints.
Moreover, the influence of the kind of internal constraints in establishing the mathematical form of the
equilibrium equations is pointed out and the divergence among the findings of other approaches is thus
explained. The equivalence feature is also considered in relation to the thermodynamic potentials. Evidence is
given that not all thermodynamic potentials possess the equivalence property, i.e., attainment of an extremum,
in conditions of thermodynamic equilibrium. Consistently, mathematical properties relevant to the search of
the extrema of the Legendre transforms are recalled and elaborated upon. A selection rule is formulated that
permits the identification of the thermodynamic potentials possessing the equivalence property. The essential
role played by the internal constraints in the selection procedure is described and fully evidenced in the
subsequent application of the method to two representative cases of equilibrium that occur often in the
applications, namely, in the absence of internal constraints and when energetic freezing prevails.
@S1063-651X~98!03109-2#

PACS number~s!: 82.60.2s, 05.70.2a, 52.25.Kn
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I. INTRODUCTION

Multitemperature gas mixtures are important in the stu
of hypersonic flows, nozzle flows, jets and plumes, comb
tion and flames, plasma flows, etc., and are therefore of
mary interest in a variety of engineering applications such
planetary-entry spacecraft design, advanced hi
temperature propulsion systems, high-enthalpy wind tunn
advanced material processing and manufacturing, and so
In general, the nature of the problems encountered in
mentioned applications requires a thermochemical none
librium description of the gas mixture, but there can be c
cumstances under which it acquires importance to cons
states of thermodynamic equilibrium that are compati
with the existence of distinct temperatures and to determ
quantitatively the corresponding state parameters. Diffe
theoretical approaches have been pursued~see, e.g., Refs
@1–10# and references therein! for this purpose, but there
does not seem to be common agreement among their
ings. There are attempts@6,9,10# to confront the problem
within a kinetic framework but, expectedly, the preference
the researchers has been devoted to approaches of therm
namic character. With regard to the latter, an attentive sur
of the published~and unpublished! contributions on the sub
ject reveals a manifest disagreement about which state f
tion should be minimized or maximized to obtain the con
tions of equilibrium. Historically, the minimization of th
PRE 581063-651X/98/58~3!/3098~15!/$15.00
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Helmholtz and Gibbs potentials has been considered the
rect procedure to apply@1,7#; the generalization to multitem
perature situations was believed implied in the enforcem
of the constancy of all temperatures together with that
volume or pressure, respectively. The widespread accept
of this approach has been largely favored by the fact tha
leads to the vanishing of the chemical affinities as presc
of chemical equilibrium even in the presence of differe
temperatures, a result in accordance with and seemingly
vious generalization of that relative to single-temperature
mixtures. On the other hand, Morro and Romeo@2–4# have
dealt with the multitemperature equilibrium problem in th
context of irreversible thermodynamics. Their analys
based on the minimization of the entropy production, do
not lead to the vanishing of the chemical affinities but
similar linear combinations in which the chemical potentia
appear divided by appropriate temperatures. The discrepa
between the results of the two approaches has raised a d
on the correct form of a ‘‘generalized law of mass action
and has promoted further investigations of thermodyna
cally more traditional nature aimed to reproduce the form
the law obtained by Morro and Romeo. Thus van de San
and co-workers@5,6#, using arguments of classical therm
dynamics, started from the second law appropriately
phrased for multitemperature circumstances and introduc
‘‘generalized free energy’’@11# whose minimization, keep-
ing constant all temperatures and volume, yields the sou
result. Martinez-Sanchez@8# followed a statistical thermody
3098 © 1998 The American Physical Society
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namics approach and reproduced Morro and Romeo’s re
via the maximization of the entropy for prescribed volum
and energies of the molecular degrees of freedom of the
mixture. An attempt to reconcile the two distinct forms of t
generalized law of mass action was made by Chen and E
@12#, who proposed some theoretical considerations
lated to openness or isolation of the thermodynam
~sub!system~s! to justify the applicability of, respectively
Helmholtz- and Gibbs-potential minimization or entrop
maximization.

A contribution to the discussion on the subject was a
given by the present author in Ref.@13#. The multitempera-
ture equilibrium problem was dealt with within the fram
work of the axiomatic thermodynamics developed by Tis
@14# and Callen@15# on the foundations laid down by Gibb
@16# and applied to multitemperature gas mixtures by N
politano @17#. Evidence was given that the presumed div
gence of the findings of the various approaches is only
parent because the two forms found for the law of m
action correspond to differently constrained equilibria. Bo
forms are recoverable from the correct application of
general principle of energy minimization and entropy ma
mization if the important role played by the physical co
straints imposed on the gas mixture is recognized and ap
priately brought into account. In particular, it was shown th
in multitemperature situations~a! energy minimization and
entropy maximization are still equivalent for the purpose
determining the conditions of equilibrium and~b! there is no
generalized law of mass action, but the applicable form
the law depends on what kind of internal constraints are
tive in the mixture. The former conclusion, however, w
reached in a rather applicative manner by showing that
same equilibrium equations are obtained via the applica
of either energy minimization or entropy maximization to t
particular case when energy redistribution is impeded am
some molecular degrees of freedom. Furthermore, the
and features of the thermodynamic potentials for the purp
of determining the conditions of equilibrium were not elab
rated upon, but only briefly mentioned.

The present work is meant to complement and, for cer
aspects, to complete Ref.@13#. Its purpose is to consolidat
with a more general proof the equivalence between ene
minimization and entropy maximization in the presence
multiple temperatures and to address in a more detailed m
ner aspects concerning the use of the thermodynamic po
tials in such a situation.

The thermodynamic system of interest is a gas mixt
with n chemical components (e51, . . . ,n) in a volumeV.
The eth component is present with a massme and possesse
l e independent molecular degrees of freedomd
51, . . . ,l e). The degrees of freedom represent the therm
dynamic subsystems and are considered in disequilibr
with respect to mass and energy exchanges@17#. Each degree
of freedom has associated an energyUed and an entropySed
that depend on each other via the fundamental rela
Ued(Sed ,V,me) or Sed(Ued ,V,me). The independence o
the degrees of freedom implies the additivity of the energ
Ued and the entropiesSed . The energetic and entropic fun
damental relations of the gas mixture in thermochem
nonequilibrium read formally
ult
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U5(
e,d

Ued~Sed ,V,me!5U~S,V,m!, ~1!

S5(
e,d

Sed~Ued ,V,me!5S~U,V,m!. ~2!

In Eqs. ~1! and ~2!, S, U, and m represent the arrays of
respectively, the(el e entropies$S11,S12, . . . ,S21, . . . %, the
(el e energies$U11,U12, . . . ,U21, . . . %, and then masses
$m1 ,m2, . . . %. The reader is referred to Ref.@13# for details
relative to definitions and notation adopted in the followi
sections.

II. EQUILIBRIUM PRINCIPLE AND CONSTRAINTS

The principle of thermodynamic equilibrium in its axiom
atic form was established by Gibbs@16# on arguments of
physical nature and has been dealt with at length by Ti
@14#, Callen@15#, and Napolitano@17#. It affirms @16,17# that
the values attained at equilibrium by the independent s
parameters of a thermodynamic system are those that m
mize the energy@Eq. ~1!# or, equivalently, maximize the en
tropy @Eq. ~2!# of the system in the domain defined by i
‘‘virtual’’ states that are compatible with the physical co
straints~Gibbs’ ‘‘equations of condition’’@16#! affecting the
variations of its independent state parameters. Alterna
viewpoints and corresponding formulations in line with t
philosophy of axiomatic thermodynamics can be found
Refs.@14, 15, 18#.

An essential feature associated with any state of equ
rium is the existence of a minimum set of constraints~Na-
politano’s ‘‘isolation conditions’’ @17#; see also Ref.@16#!
that must be necessarily accounted for in the minimization
maximization procedure. In the energetic representation@Eq.
~1!#, these constraints are expressed by the conservatio
entropy, volume, and mass

S5Sa, ~3!

V5Va, ~4!

m5ma. ~5!

The superscripta on the right-hand sides of Eqs.~3!–~5!
denotes assigned values of the variables in question;
notation will be retained hereinafter. In the alternative e
tropic representation@Eq. ~2!#, the prescription@Eq. ~3!# of
the entropy is replaced with the conservation of the ener

U5Ua. ~6!

With regard to gas mixtures in thermochemical noneq
librium, additional constraints~Callen’s ‘‘internal con-
straints’’ @15#! may arise from the physical modalities th
govern mass and energy exchanges during the molecular
lisions. Ther independent chemical reactions associated w
the species present in the mixture represent an examp
such constraints; their occurrence restrains the compo
masses to vary according to linear combinations
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me5me
01 (

k51

r

jknkeM e , e51, . . . ,n, ~7!

of the reaction progress variablesjk . In Eq. ~7!, me
0, nke ,

andM e are, respectively, the initial mass, stoichiometric c
efficient in thekth reaction, and molecular mass of theeth
component. The stoichiometric relations

(
e51

n

nkeM e50, k51, . . . ,r , ~8!

enforce the mass conservation across the chemical reac
and permit the convenient disposal of the mass conserva
@Eq. ~5!#

m5 (
e51

n

me5 (
e51

n

me
05ma. ~9!

Thus a rigorous analysis should proceed by considering
masses as state parameters and the linear combinations~7! as
constraint equations. However, much simplification and c
ity are achieved by interpreting the linear combinations~7!
as enforcing a change of variables in the set of indepen
state parameters and by incorporating them, as such, dir
into the fundamental relations. In this manner, the com
nent masses lose their prerogative of independence as
parameters and are replaced with the reaction progress
ables. Every occurrence of ‘‘me’’ in the functional depen-
dence of energy and entropy can be formally replaced w
the arrayj of the r progress variables$j1, j2, . . . %

U5(
e,d

Ued~Sed ,V,j!5U~S,V,j!, ~10!

S5(
e,d

Sed~Ued ,V,j!5S~U,V,j!. ~11!

Other typical constraints met in the applications can be
inhibition of a chemical reaction (jk5jk

a), the restraint of
the energy (Ued5Ued

a ) distributed over a degree of freedom
etc. Explicit examples are the lack of chemical reactiv
between H2 and O2 at standard temperature and pressure
the lack of thermalization of the free electrons with neut
and ionized species in partially ionized gases@19#.

The internal constraints represent additional restricti
imposed on the independent state parameters. In gen
they appear in the form of mathematical relations

f j ~ independent state parameters!50, j51,2, . . . ,
~12!

which supplement the conservation constraints@Eq. ~3! or ~6!
and Eq.~4!#. In this regard, particular attention@20# should
be paid to select the appropriate functional dependenc
Eq. ~12! according to the chosen thermodynamic represe
tion. For example, the energetic freezing constraintUed

2Ued
a 50 reads as such in the entropic scheme, but it m

be interpreted asUed(Sed ,V,j)2Ued
a 50 in the energetic

scheme. This aspect should never be overlooked when
forming equilibrium analyses.
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III. EQUIVALENCE OF ENERGY MINIMIZATION
AND ENTROPY MAXIMIZATION

The equivalence between energy minimization and
tropy maximization finds its expression in the equilibriu
principle recalled in Sec. II and is founded upon rigoro
mathematical proof. For single-temperature gas mixtures,
specification of the detailed distribution of energy and e
tropy among the degrees of freedom is not necessary and
knowledge of the functional dependence between their t
amounts is sufficient for thermodynamic purposes. The f
damental relations~10! and~11! simplify to the more famil-
iar forms

U5U~S,V,j!, ~13!

S5S~U,V,j!, ~14!

whose differentials compatible with the conservation co
straints@Eq. ~3! or ~6! and Eq.~4!# read

~dU!S,V5 (
k51

r

Akdjk52T~dS!U,V . ~15!

In Eq. ~15!,

Ak5~]U/]jk!S,V,all jaÞk
52T~]S/]jk!U,V,all jaÞk

is the affinity of thekth reaction, given by the linear comb
nation

Ak5 (
e51

n

nkeM eme ~16!

of the chemical potentials me5(]U/]me)S,V,all maÞe

52T(]S/]me)U,V,all maÞe
associated with the component

andT5(]U/]S)V,j51/(]S/]U)V,j is the temperature of the
gas mixture. The equivalence between energy minimiza
and entropy maximization is easily understood from E
~15!, which can also be rewritten in the convenient form

~dU!S,V1T~dS!U,V50. ~17!

A more formal and detailed proof of Eq.~15! has been given
by Callen@15#.

The equivalence property holds also for multitemperat
gas mixtures, although it seems to be not as easily perce
as in the former case. An elegant proof is achieved with
method of the Lagrange multipliers@14#. The conservation
constraints~3! and ~6! play a key role in this case becaus
they introduce in the Lagrangian functions
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whose minimization and maximization lead, respectively,
the conditions of equilibrium, the symmetry necessary
their equivalence. The differentials ofL@U# andL@S# read,
respectively,

dL@U#5(
e,d

dUed2lS(
e,d

dSed1lVdV1(
j

l jdf j , ~20!

dL@S#5(
e,d

dSed2lU(
e,d

dUed1lV8dV1(
j

l j8df j . ~21!

Equations~20! and~21! can always be turned into each oth
by appropriate algebraic manipulation. For example, mu
plying Eq. ~20! by 21/lS and rearranging gives

2
1

lS
dL@U#5(

e,d
dSed2

1

lS
(
e,d

dUed

2
lV

lS
dV2(

j

l j

lS
df j . ~22!

The formal coincidence (lU51/lS , lV852lV /lS ,
l j852l j /lS) between the right-hand sides of Eqs.~21! and
~22! yields the linear dependence

dL@U#1lSdL@S#50. ~23!

Equation~23! is the generalization of Eq.~17!. It proves the
equivalence between energy minimization and entropy m
mization in multitemperature situations, regardless of the
plicit form assumed by the internal constraints@Eq. ~12!#.
Thus either the minimization of the Lagrangian~18! or the
maximization of the Lagrangian~19! will return the same
equilibrium equations. These equations, however, will c
tain the derivatives of the functionsf j with respect to the
independent state parameters in the chosen represen
and therefore their mathematical form will depend on
explicit form of the internal constraints. In other words, the
is no generalized~in the thermodynamic sense! form of the
equilibrium equations, and of the law of mass action in p
ticular, that fulfills the task of producing the conditions
equilibrium irrespective of the constraining occurrences
the case being considered, as the antithetical opinions
o
r

i-

i-
x-

-

tion
e

-

f
x-

pressed in the literature seem to imply, but the applica
form of the equations varies according to the kind of inter
constraints active in the gas mixture.

IV. EQUIVALENCE PROPERTY AND THERMODYNAMIC
POTENTIALS

A. Introductory remarks

When dealing with single-temperature gas mixtures, i
customary to think that any~habitually used! thermodynamic
potential can serve the purpose of finding the conditions
equilibrium, i.e., the chemical equilibrium composition, pr
vided the appropriate couple of state parameters is held
stant@21#. The equivalence of Helmholtz-potential, enthalp
and Gibbs-potential minimization is enforced, respective
by the relations

~dF!T,V5~dH!S,p5~dG!T,p5~dU!S,V . ~24!

In Eq. ~24!, p is the thermodynamic pressure. Relations sim
lar to Eq.~24! exist also for the entropic potentials@22# de-
fined as

w5S2
1

T
U, ~25!

F5S2
p

T
V, ~26!

C5S2
1

T
U2

p

T
V. ~27!

They read

~dw!1/T,V5~dF!U,p/T5~dC!1/T,p/T5~dS!U,V ~28!

and enforce the equivalence ofw-, F-, andC-potential maxi-
mization. Now, inconsistencies arise when the idea is
ported as such to multitemperature situations. The gene
zation of the mentioned energetic and entropic potentials
the latter situations is considered, apparently, rather strai
forward @1,5–7#. On the other hand, the minimization of th
multitemperature counterparts of the Helmholtz and Gib
potentials appears to succeed or fail@23# in predicting the
conditions of equilibrium according to the particular proble
being investigated. At the same time, the minimization
van de Sanden’s generalized free energy@5,6,11# leads to
equilibrium equations unexpectedly at variance with tho
obtained from the minimization of the generalized Helmho
and Gibbs potentials. Thus, why does the latter proced
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3102 PRE 58D. GIORDANO
fail in some cases? Why do generalized energetic and
tropic potentials lead to distinct equilibrium equations, n
withstanding the unconditional equivalence of energy a
entropy~Sec. III!? Whether or not the theoretical argumen
adduced to provide definite answers to these questions
sufficiently convincing, the applications remains somew
pervaded by a vague sense of uncertainty and hesitation@24#.

In the author’s opinion, equilibrium analyses will inevita
bly be plagued by confusion and a lack of clear understa
ing until it will be realized that the equivalence relations~24!
and ~28! reflect only a partial view of a more general di
course and that their extension to multitemperature gas m
tures is not as straightforward as hurriedly assumed. Inter
ingly enough, the underlying limitations can be made evid
even in single-temperature circumstances. Taking into
count Eqs.~15! and~16!, the vanishing of the differentials in
Eqs. ~24! and ~28! generates ther chemical equilibrium
equations

(
e51

n

nkeM eme50, k51, . . . ,r , ~29!

which, together with the prescription of the appropria
couple of state parameters@subscripts in Eqs.~24! and~28!#,
can be solved for the equilibrium values of ther reaction
progress variables. On the other hand, it is immediately v
fied that the perfectly legitimate potential

L5U2A1j15L~S,V,A1 ,j2, . . . ,j r ! ~30!

does not attain a minimum when calculated in corresp
dence to the solution of the system~29! for the same pre-
scribed entropy and volume. The potentialL attains an ex-
tremum when

S ]L

]A1
D

S,V,all jkÞ1

52j1~S,V,A1 ,j2, . . . ,j r !50, ~31!

(
e51

n

nkeM eme50, k52, . . . ,r . ~32!

The solution provided by Eqs.~31! and ~32! does not coin-
cide with the ~chemical, in this case! equilibrium solution
yielded by the system~29!. However, under the particula
circumstance of partially constrained equilibrium in whi
the reactionk51 is inhibited, the potentialL becomes
equivalent to, for instance, the energyU because in this cas
their differentials come to coincide

~dL!S,V,A1
5~dU!S,V,j1

. ~33!

The supplemental conditionA15A1
a enforces the inhibition

of the reactionk51 in the L-potential representation an
replaces the analogous conditionj15j1

a of the energetic rep-
resentation@25#.

This simple example points out two important aspects:~a!
There can be thermodynamic potentials that do not attain
extremum in conditions of equilibrium and~b! the internal
constraints seem to play a role in conferring the equivale
property to the potentials. Thus, for a given situation of p
tially constrained equilibrium, how can the potentials po
n-
-
d

re
t

d-

x-
st-
t

c-

i-

-

n

e
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-

sessing the equivalence property be selected and how do
internal constraints intervene in the selection process?
swering is not a straightforward endeavor but requires ca
ful reconsideration and adequate generalization of es
lished notions involving, at the same time, mathemati
aspects and physical interpretation. The logical way to e
bark on such a task is to revisit some mathematical prop
ties of the potentials that lead to answer the posed questi

B. Some mathematical properties of the Legendre transforms

In mathematical language, the thermodynamic potent
are the Legendre transforms of a fundamental relation@Eqs.
~10! and~11!#. Detailed expositions on the subject have be
given by Tisza@14#, Callen @15#, and Napolitano@17#. The
considerations of this section take advantage and are
upon the exposition of the latter author.

Consider a functionf 5 f (x1 , . . . ,xv) of v variables and
its derivatives

ui5
] f

]xi
5ui~x1, . . . ,xv!, i 51, . . . ,v. ~34!

Moreover, assume that the variations oft (t,v) variables
are affected byc (c<t) constraints. After an inessential pe
mutation, it is always possible to enumerate the variable
such a way that the constrained ones are grouped fori rang-
ing from 1 to t. Thus, in general, the constraints can
expressed as

b j~x1 , . . . ,xt!50, j51, . . . ,c. ~35!

The search of the extrema of the functionf with the con-
straints~35! calls for the Lagrangian function

L@ f #5 f 1(
j 51

c

l jb j ~36!

and leads to thev equations

ui~x1 ,...,xv!1(
j 51

c

l j

]b j

]xi
50, i51, . . . ,t ~37!

ui~x1 ,...,xv!50, i5t11, . . . ,v. ~38!

These equations, the derivative definitions@Eq. ~34!#, and the
constraint equations@Eq. ~35!# constitute a system of 2v
1c equations for thev variablesxi , thev derivative values
ui , and thec Lagrange multipliersl j . The valuesxi

e ,ui
e

( i 51, . . . ,v) provided by the solution of such a system m
conveniently be referred to as ‘‘equilibrium’’ conditions.

The function f generates 2v21 Legendre transforms
Among these, the one defined as

g5 f 2(
i 51

t

uixi ~39!

deserves particular attention in connection with the existe
of the constraints~35!. In the g-potential representation th
first t derivatives ~34! replace their conjugate variable
xi ( i 51, . . . ,t) and assume the role of independent va
ables. The functiong reads
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g5g~u1 , . . . ,ut,xt11, . . . ,xv! ~40!

and yields the derivatives

2xi5
]g

]ui
52xi~u1, . . . ,ut ,xt11 ,...,xv!, i 51, . . . ,t

~41!

ui5
]g

]xi
5ui~u1 ,...,ut ,xt11 ,...,xv!, i 5t11, . . . ,v.

~42!

The transform~39! is characterized by the following notice
able property@17#: Its extrema compatible with the con
straints

ui2ui
e50, i51, . . . ,t, ~43!

coincide with the extrema of the functionf compatible with
the constraints~35!. In fact, the search of the extrema of th
transform ~39! with the constraints~43! requires the La-
grangian function

L@g#5g1(
i 51

t

l i8~ui2ui
e! ~44!

and produces thev equations

xi~u1, . . . ,ut ,xt11, . . . ,xv!2l i850, i51, . . . ,t
~45!

ui~u1, . . . ,ut ,xt11, . . . ,xv!50, i5t11, . . . ,v. ~46!

The former equations@Eq. ~45!# yield the t Lagrange multi-
pliers l i8 and are therefore inessential. The latter equati
@Eq. ~46!# coincide with those@Eq. ~38!# found previously,
although the functional dependence is different because
have been generated within theg-potential representation
With the aid of Eq.~43!, it is easy to verify that Eqs.~41! and
~46! reduce to identities when the equilibrium valuesxi

e ( i
51, . . . ,v) are substituted into them. Thus the functionf
and its transform~39! share the same extrema and, in th
sense, they are equivalent for the purpose of finding the e
librium conditions.

Whether the equivalence property belongs exclusively
the transform~39! or it is owned by other transforms of th
function f depends on the possibility of decoupling offer
by the constraints~35!. Constraint decoupling occurs whe
the constraint equations do not share simultaneously all
constrained variables. As a first step towards the underst
ing of this important mathematical aspect with far-reach
physical significance, consider the circumstance in which
first t8 (t8,t) constrained variables appear only in the fi
c8 (c8,c; c8<t8) constraint equations

b j~x1 ,...,xt8!50, j51, . . . ,c8, ~47!

while the remainingt2t8 constrained variables appear on
in the remainingc2c8 (c2c8<t2t8) constraint equations

b j~xt811, . . . ,xt!50, j5c811, . . . ,c. ~48!
s

ey

i-

o

e
d-

g
e
t

There is no loss of generality in assuming this ordering
constraints and variables because it can always be arrive
after adequate, and inessential, permutations; what re
matters is that Eqs.~47! and~48! do not have any variable in
common. The separation of Eq.~35! into Eqs.~47! and~48!
makes block-diagonal@26# the Jacobian of the constraints

S ]b j

]xi
D

c3t

5S S ]b j

]xi
D

c83t8

0

0 S ]b j

]xi
D

~c2c8!3~ t2t8!

D .

~49!

The appearance of two noncommunicating, independ
blocks in Eq. ~49! suggests that the equivalence prope
featured by the transform~39! may have been passed on
the transforms

ĝ5 f 2(
i 51

t8

uixi , ~50!

g̃5 f 2 (
i 5t811

t

uixi ~51!

in connection with the constraints~47! and ~48!, respec-
tively. As a matter of fact, this turns out to be the case.
particular, the determination of the extrema of the transfo
~50! compatibly with the constraints

ui2ui
e50, i51, . . . ,t8 ~52!

b j~xt811, . . . ,xt!50, j5c811, . . . ,c ~53!

returns the same equilibrium conditions obtained by the
tremization of the functionf compatible with the constraint
~47! and ~48!. The same holds for the transform~51!, but
with the constraints

b j~x1, . . . ,xt8!50, j51, . . . ,c8 ~54!

ui2ui
e50, i5t811, . . . ,t. ~55!

The proof of these equivalence statements starts, res
tively, from the Lagrangian functions

L@ ĝ#5ĝ1(
i 51

t8

l̂i8~ui2ui
e!1 (

j 5c811

c

l̂jb j , ~56!

L@ g̃#5g̃1(
j 51

c8

l̃jb j1 (
i 5t811

t

l̃i8~ui2ui
e! ~57!

and proceeds along arguments similar to those used to e
lish the equivalence of the transform~39!. The algebraic pas-
sages are somewhat lengthy and therefore are omitted.

The recursive application to the constraints~35! of the
separability concept permits a straightforward generaliza
of the conclusions drawn for the introductory case and le
to the definition of an unambiguous selection procedure
single out the transforms of the functionf that possess the
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equivalence property. The basic step is to operate a reduc
of the Jacobian (]b j /]xi)c3t to a block-diagonal form, sche
matically represented in the diagram of Fig. 1, by inspect
of the constraint equations~35!. Then every transform o
the function f obtained by selecting a block~say,
i 5t811, . . . ,t9) and by making the Legendre transform
tion with respect toall the variablesxi included in the se-
lected block is equivalent to the functionf for the purpose of
finding the equilibrium conditions provided that the subset
the c92c8 constraints

b j~xt811, . . . ,xt9!50, j5c811, . . . ,c9, ~58!

corresponding to the selected block is replaced with the
scription of thet92t8 first derivatives

ui2ui
e50, i5t811, . . . ,t9, ~59!

of the functionf. Multiple blocks can be simultaneously s
lected for transformation. Thus, ifb (b<t) is the number of
blocks in which the Jacobian (]b j /]xi)c3t can be decom-
posed~see Fig. 1! then the number of equivalent transform
is 2b21. For example, in the introductory case the Jacob
reduces tob52 blocks @Eq. ~49!# and gives rise to the 22

2153 equivalent transforms~39!, ~50!, and ~51!. If the
Jacobian cannot be reduced to a block-diagonal form, t
b51 and the transform~39! is the only equivalent transform
available.

C. Representative cases of equilibrium

1. Basic definitions

The considerations of Sec. IV B resolve the questions
pressed at the end of Sec. IV A and give evidence of
importance that the knowledge of the constraints imposed
the gas mixture has for the purpose of identifying the equi
lent thermodynamic potentials. In order to remove ma

FIG. 1. Reduction of the Jacobian (]b j /]xi)c3t to a block-
diagonal form.
on

n

f

e-

n

n

x-
e
n
-
-

ematical abstraction and to reintroduce physical significan
those considerations will be applied in the following sectio
to representative cases of equilibrium, namely, in the
sence of internal constraints and in the presence of energ
freezing. A more concrete example of the application of
ideas expounded in this work is illustrated in Ref.@27# and,
in a more elaborate manner, in Ref.@13#, where the Saha
equation for a two-temperature partially ionized gas is
rived for both the constraining circumstances in which t
energy or the entropy, respectively, of the free electron tra
lational degree of freedom are frozen.

There are diverse motivations behind the choice of
equilibrium cases dealt with in the following sections. T
equilibrium analysis relative to the absence of internal c
straints shows unequivocally that the application of the
lection rule described in Sec. IV B leads invariably to agre
ment with the equivalence relations~24! and ~28! when
multitemperature mixtures reduce to single-temperat
ones; it also represents a case in which the minimization
the generalized Helmholtz and Gibbs potentials and
maximization of van de Sanden’s generalized free energy
not exclude each other but lead to concording equilibri
equations. Equilibria in the presence of energetic freezing
reported to be observed in applications and experimental
ups ~see Ref.@5# and Refs.@19, 20# therein; see also Ref
@24#!; the corresponding equilibrium analysis evidences t
the selection rule of Sec. IV B interdicts the use of the ge
eralized Helmholtz and Gibbs potentials and favors the
plicability of van de Sanden’s generalized free energy,
accordance with Refs.@5, 6#, although, at the same time,
reveals the lack of generality otherwise claimed for the la
potential. However, before plunging in the mathematical
tail, it is convenient to recall and summarize some ba
definitions@13# in view of the Legendre-transforming opera
tions that will be carried out on the fundamental relatio
~10! and ~11!.

The (el e entropiesS, the volumeV, and ther progress
variablesj are the independent state parameters (v5(el e
111r ) in the energetic representation. The first derivativ
of the energy~10! represent, by definitions, the state equ
tions @14,15,17# of the gas mixture in that scheme. The d
rivatives taken with respect to the entropies define the co
sponding temperatures

Ted5S ]U

]Sed
D

all SahÞed ,V,j

for all e,d ~60!

associated with the degrees of freedom of the compone
The derivative taken with respect to the volume defines
pressure

2p5S ]U

]V D
S,j

~61!

of the gas mixture, which, as a consequence of the ene
additivity, turns out to be given by the sum(e,d ped of the
partial pressuresped52(]Ued /]V)Sed ,j ~Dalton’s law!. The
derivatives taken with respect to the progress variables de
the energetic@28# affinities



o

vo
q
o
re

th

e
e

dy
o
e

om
c
s
th

m
ls
q

ec

ro-

ion

-

(

i-
on

lier
m
e

lta-
.
ic
al

en-
is

r

-

-

PRE 58 3105EQUIVALENCE OF ENERGY, ENTROPY, AND . . .
Ak5S ]U

]jk
D

S,V,all jaÞk

, k51, . . . ,r , ~62!

of the chemical reactions. These affinities are obtained fr
the linear combinations

Ak5 (
e51

n

nkeM e (
d51

l e

med , k51, . . . ,r , ~63!

of the partial chemical potentials

med5~]Ued /]me!Sed ,V,all maÞe
.

Equation~63! is the generalization of Eq.~16! in a multitem-
perature context.

In the entropic representation, the(el e energiesU assume
the role of independent state parameters together with
ume and progress variables. In this scheme, the state e
tions of the gas mixture are given by the first derivatives
the entropy~11!. They define, respectively, the temperatu
reciprocals

1

Ted
5S ]S

]Ued
D

all UahÞed ,V,j

for all e,d, ~64!

the sum of the ratiosped /Ted

(
e,d

ped

Ted
5S ]S

]VD
U,j

, ~65!

and the entropic@28# affinities

2Āk5S ]S

]jk
D

U,V,all jaÞk

, k51, . . . ,r , ~66!

of the chemical reactions. These affinities are given by
linear combinations

Āk5 (
e51

n

nkeM e (
d51

l e med

Ted
, k51, . . . ,r , ~67!

of the ratios med /Ted52(]Sed /]me)Ued ,V,all maÞe
. Ener-

getic and entropic affinities are distinct and coexisting th
modynamic entities; the necessity to discern between th
manifests itself only in multitemperature situations.

2. Equilibrium in the absence of internal constraints

The absence of internal constraints@Eq. ~12!# is the mac-
roscopic condition that settles in when the physical and
namical properties of the molecules participating in the c
lisions taking place in the gas mixture allow a fre
redistribution of mass and energy among, respectively, c
ponents and molecular degrees of freedom. Under these
cumstances, the unrestrained redistribution of energy lead
the establishment of a common temperature among all
degrees of freedom or, equivalently, to the complete ther
equilibrium of the gas mixture. When this condition prevai
the gas becomes a single-temperature mixture for which E
~24! and ~28! hold. The selection method described in S
m

l-
ua-
f

e

r-
m

-
l-

-
ir-
to
e

al
,
s.
.

IV B can thus be tested by checking if its application rep
duces the equivalence relations~24! and~28! when the inter-
nal constraints~12! are absent.

The equilibrium analysis in the energetic representat
starts from the fundamental relation~10!. The prescriptions
of entropy@Eq. ~3!# and volume@Eq. ~4!# are the sole con-
straints (c52) to account for; they are conveniently re
phrased here as

bS5(
e,d

Sed2Sa50, ~68!

bV5V2Va50 ~69!

for formal consistency with Eq.~35!. The entropies and the
volume constitute the set of the constrained variablest
5(el e11). The minimization of the Lagrangian function

L@U#5(
e,d

Ued~Sed ,V,j!2lSS (
e,d

Sed2SaD 1lV~V2Va!

~70!

leads to the equilibrium equations

Ted2lS50 for all e,d, ~71!

2p1lV50, ~72!

Ak50, k51, . . . ,r . ~73!

The set of equations~71! enforces the mutual thermal equ
librium of the degrees of freedom: They all share a comm
temperature given by the value of the Lagrange multip
lS , which represents, therefore, the thermal-equilibriu
temperatureTe. The latter is the familiar temperature of th
single-temperature mixtures; the superscripte is kept for no-
tational consistency. The Lagrange multiplierlV obtained
from Eq.~72! represents the equilibrium valuepe of the pres-
sure. The vanishing@Eq. ~73!# of the energetic affinities~63!,
in turn, characterizes the chemical equilibrium. The simu
neous solution of Eqs.~71!–~73!, supplemented with Eqs
~68! and ~69!, provides the conditions of thermodynam
equilibrium of the gas mixture in the absence of intern
constraints.

The identification among the (2(r 111(e l e)21) thermody-
namic potentials generable by Legendre transforming the
ergy ~10! of those possessing the equivalence property
determined by the structure of the Jacobian

]~bS ,bV!

]~S,V!
5S 1 1 ••• 1 0

0 0 ••• 0 1D ~74!

of the constraints~68! and~69!. The decoupling of the latte
makes their Jacobian block-diagonal withb52 independent
blocks; there are then only 222153 thermodynamic poten
tials equivalent to the energy~10!. The selection of the top-
left block of the Jacobian~74! calls for the Legendre trans
formation with respect to all the entropiesSed and, taking
into account the temperature definitions~60!, it identifies the
complete Helmholtz potential@29#
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TABLE I. Equivalent thermodynamic potentials, and associated constraints, generated by Legendr
forming the energy~10! in the absence of internal constraints.

Block selected
from diagonal of

Jacobian~74! Potential Constraints

top left F5U2(
e,d

Ted Sed Ted2Te50 ~for all e,d!

V2Va50

bottom right H5U1pV (
e,d

Sed2Sa50

p2pe50

both G5U2(
e,d

Ted Sed1pV Ted2Te50 ~for all e,d!

p2pe50
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F5U2(
e,d

TedSed5F~T,V,j!. ~75!

In Eq. ~75!, T represents the array of the(el e temperatures
$T11,T12, . . . ,T21, . . . %. Consistently with the chosen se
lection, the entropy constraint~68! must be discarded an
replaced with the prescription of the temperatures

Ted2Te50 for all e,d. ~76!

The latter equations assume the role of constraints (Ted
a

5Te for all e, d! in the representation based on the poten
~75!. The volume constraint~69! is unrelated to the top-lef
block and therefore must be retained as such. Taking
account the pressure definition~61!, the selection of the
bottom-right block of the Jacobian~74! leads to the enthalpy

H5U1pV5H~S,p,j!. ~77!

In this case, the entropy constraint~68! must be retained and
the volume constraint~69! must be replaced with the pre
scription of the pressure

p2pe50, ~78!

which therefore assumes the role of constraint (pa5pe) in
the enthalpy representation. The simultaneous selectio
both the diagonal blocks in the Jacobian~74! leads to the
complete Gibbs potential

G5U2(
e,d

TedSed1pV5G~T,p,j! ~79!

and the relevant constraints are Eqs.~76! and ~78!. Table I
summarizes the identified potentials and the associated
straints. The minimization of any Lagrangian function co
structed from those potentials and their associated constr
provides the same equilibrium conditions found from t
minimization of the Lagrangian function~70!. Thus the ap-
plication of the selection procedure described in Sec. IV
leads to a result that confirms and generalizes the equ
lences expressed in Eq.~24!.

According to the property of equivalence between ene
and entropy discussed in Sec. III, the same conditions
l

to

of

n-
-
nts

a-

y
of

thermodynamic equilibrium provided by the minimization
the Lagrangian function~70! are obtained also from the equ
librium analysis in the entropic representation. In this rep
sentation, the analysis is based on the fundamental rela
~11!. The entropy conservation@Eq. ~3! or ~68!# is replaced
with the energy prescription@Eq. ~6!#, which is consistently
rephrased here as

bU5(
e,d

Ued2Ua50. ~80!

The maximization of the Lagrangian function

L@S#5(
e,d

Sed~Ued ,V,j!2lUS (
e,d

Ued2UaD 1lV8 ~V2Va!

~81!

leads to the equilibrium equations

1

Ted
2lU50 for all e,d, ~82!

(
e,d

ped

Ted
1lV850, ~83!

Āk50, k51, . . . ,r . ~84!

The set of equations~82! reaffirms the complete therma
equilibrium of the degrees of freedom. The Lagrange mu
plier lV8 obtained from Eq.~83! represents, apart from th
sign, the equilibrium value of the entropic~nameless! state
equation(e,dped /Ted , which, because of the complete the
mal equilibrium, reduces to the ratiope/Te. The vanishing
@Eq. ~84!# of the entropic affinities~67! governs the chemica
equilibrium. In spite of their different mathematical stru
ture, energetic@Eq. ~63!# and entropic@Eq. ~67!# affinities
become equivalent in the case, and only in this case, of
sent internal constraints because the complete thermal e
librium @Eqs. ~71! and ~82!# implies the relationship (1/lU
5lS5Te)
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TABLE II. Equivalent thermodynamic potentials, and associated constraints, generated by Le
transforming the entropy~11! in the absence of internal constraints.

Block selected
from diagonal of

Jacobian~86! Potential Constraints

top left w5S2(
e,d

1

Ted
Ued

1

Ted
2

1

Te50 ~for all e,d!

V2Va50

bottom right F5S2(
e,d

ped

Ted
V (

e,d
Ued2Ua50

(
e,d

ped

Ted
2

pe

Te50

both C5S2(
e,d

1

Ted
Ued2(

e,d

ped

Ted
V

1

Ted
2

1

Te50 ~for all e,d!

(
e,d

ped

Ted
2

pe

Te 50
g
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l,
.

Āk5
1

Te Ak . ~85!

Therefore, the vanishing of one presupposes the vanishin
the other. In conclusion, the set of equations~82!–~84!,
supplemented with Eqs.~69! and ~80!, is equivalent to that
composed by Eqs.~71!–~73!, supplemented with Eqs.~68!
and ~69!; they both yield the same equilibrium conditions

The constraints~69! and ~80! are, once again, decouple
and their Jacobian

]~bU ,bV!

]~U,V!
5S 1 1 ••• 1 0

0 0 ••• 0 1D ~86!

features the same structure of the Jacobian~74!. Thus there
are also three equivalent thermodynamic potentials of
entropy~11!. The completew potential

w5S2(
e,d

1

Ted
Ued5wS 1

T
,V,jD ~87!

is obtained from the selection of the top-left block of t
Jacobian~86! and depends on the array1/T of the (el e tem-
perature reciprocals$1/T11,1/T12, . . . ,1/T21, . . . %. With its
sign changed, it coincides with the generalized free ene
introduced by van de Sanden and co-workers@5,6#. The po-
tential ~87! must be maximized with the volume constrai
~69! and the prescription of the temperature reciprocals

1

Ted
2

1

Te 50 for all e,d. ~88!

that replace the energy constraint~80!. TheF potential

F5S2(
e,d

ped

Ted
V5FS U,(

e,d

ped

Ted
,jD ~89!
of

e

y

derives from the selection of the right-bottom block of t
Jacobian~86!. Its maximization requires the energy co
straint ~80! and the prescription

(
e,d

ped

Ted
2

pe

Te 50 ~90!

of the state equation~65!. The completeC potential

C5S2(
e,d

1

Ted
Ued2(

e,d

ped

Ted
V5CS 1

T
,(

e,d

ped

Ted
,jD

~91!

is found from the selection of both the diagonal blocks of t
Jacobian~86! and must be maximized with the constrain
~88! and ~90!. The potentials equivalent to the entropy a
summarized in Table II. The equivalences expressed in
~28! are thus also confirmed and generalized.

3. Equilibrium with energetic freezing

Energetic freezing refers to the situation in which the e
ergy exchanges among some degrees of freedom are
paired during the collisions. Under such circumstances,
energies of the ‘‘frozen’’ degrees of freedom are restrain
to remain constant. A typical example is the two-temperat
equilibrium observed in partially ionized gases. In this ca
the exchange of the translational energy of the free electr
is practically inhibited because the small electron mass
compared to the mass of the heavier species, makes the
tic collisions an inefficient mechanism for the redistributio
of that energy.

The equilibrium analysis in the presence of energe
freezing was carried out in Ref.@13# with the aid of the
fundamental relation~11! and by assuming that, in genera
each component hasl̄ e (< l e) frozen degrees of freedom
Thus the gas mixture is subjected to the(e l̄ e internal con-
straints
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Ued5Ued
a

for all e ;d of frozen degrees of freedom only.
~92!

It was also shown in Ref.@13# that, in accordance with the
equivalence property discussed in Sec. III, the equilibri
analysis based on the fundamental relation~10! leads to the
same equilibrium equations. The latter can be summarize
follows. The nonfrozen degrees of freedom attain mut
thermal equilibrium, enforced by the(e( l e2 l̄ e) equations

1

Ted
2lU50

for all e ;d of nonfrozen degrees of freedom only.
~93!

No condition exists on the temperaturesTed
e of the frozen

degrees of freedom; they differ from the equilibrium tem
peratureTe51/lU and must be determined from the defin
tions ~60! or ~64! after the set of equilibrium equations ha
been solved. Assuming, for simplicity, that the progress v
ables are unconstrained, the chemical equilibrium is g
erned by the vanishing of the entropic affinities

Āk5 (
e51

n

nkeM e (
d51

l e med

Ted
50, k51, . . . ,r . ~94!

It is important to notice that the incompleteness of the th
mal equilibrium@Eq. ~93!# due to the energetic freezing@Eq.
~92!# of some degrees of freedom excludes, in general,
validity of Eq. ~85!. The lack of equivalence between ene
getic and entropic affinities stems from the fact that the
ear combinations~67! include also the contributions of th
frozen degrees of freedom whose temperatures canno
factorized out of the summations; consequently, Eq.~85!
cannot be arrived at in the case being considered. The e
getic affinities@Eq. ~63!# do not vanish at equilibrium bu
assume definite valuesAk

e that can be calculated after the s
of the equilibrium equations has been solved.

In the energetic representation, the constraints impose
the gas mixture are the prescriptions of entropy@Eq. ~68!#
and volume@Eq. ~69!#

bS5(
e,d

Sed2Sa50, ~95!

bV5V2Va50 ~96!

supplemented with the energetic freezing constraints@Eq.
~92!#, which, in this representation, must be interpreted a

bed5Ued~Sed ,V,j!2Ued
a 50

for all e;d of frozen degrees of freedom only.
~97!

Thec521(e l̄ e constraints~95!–~97! affect all the indepen-
dent state parameters (t5(el e111r 5v) of the energetic
representation. Their Jacobian presents the structure
as
l

i-
-

r-

e

-

be

er-

on

~98!

In Eq. ~98!, b f, Sf, andSnf are the arrays of, respectively
the (e l̄ e functionsbed , the (e l̄ e entropies of the energeti
cally frozen degrees of freedom, i.e., the entropies appea
in the constraints~97!, and the(e( l e2 l̄ e) entropies of the
nonfrozen degrees of freedom, i.e., the entropies occur
only in the constraint~95!. Horizontal and vertical space i
inserted on the right-hand side of Eq.~98! to outline the
matrices composing the Jacobian; the dimensions of th
matrices can be deduced from the notation on the left-h
side of Eq. ~98!. The presence of the diagonal matr
]b f/]Sf, the sparse matrix]b f/]j, and the column matrix
]b f/]V precludes, in general, the possibility to reduce t
Jacobian~98! to the block-diagonal form illustrated in Fig. 1
Thus, in the case of energetic freezing, there is only o
(b51) thermodynamic potential equivalent to the ener
~10! and it is obtained by Legendre transforming with resp
to all the constrained variables

V5U2(
e,d

TedSed1pV2 (
k51

r

Akjk5V~T,p,A!. ~99!

In Eq. ~99!, A is the array of ther energetic affinities
$A1 ,A2, . . . %. The minimization of the thermodynamic po
tential ~99! calls for the prescription of the equilibrium tem
perature for the nonfrozen degrees of freedom

Ted2Te50

for all e;d of nonfrozen degrees of freedom only,
~100!

of the (e l̄ e distinct temperatures of the energetically froz
degrees of freedom

Ted2Ted
e 50

for all e;d of frozen degrees of freedom only,
~101!

of the pressure

p5pe50, ~102!

and of the energetic affinities

Ak2Ak
e50, k51, . . . ,r . ~103!

The constraints~100!–~103! relative to theV-potential rep-
resentation replace the constraints~95!–~97! of the energy
scheme. The structure of the Jacobian~98! indicates clearly
that no Helmholtz- or Gibbs-like potential possesses
equivalence property when energetic freezing prevails.
general, even the enthalpy does not qualify as an equiva
potential unless the energetic freezing does not affect
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TABLE III. Equivalent thermodynamic potentials, and associated constraints, generated by Legendre transforming the energy~10! in the
presence of energetic freezing of the internal degrees of freedom~DOF!.

Block selected
from diagonal of
Jacobian~104! Potential Constraints

top left Y5U2(
e,d

Ted Sed2(
k51

r

Akjk
Ted2Te50 ~for all e ; d of nonfrozen DOF!

Ted2Ted
e 50 ~for all e ; d of frozen DOF!
Ak2Ak

e50 (k51, . . . ,r )
V2Va50

bottom right H5U1pV (
e,d

Sed2Sa50

Ued(Sed ,V,j)2Ued
a 50 ~for all e ; d of frozen DOF!

p2pe50

both V5U2(
e,d

Ted Sed1pV2(
k51

r

Akjk
Ted2Te50 ~for all e ; d of nonfrozen DOF!

Ted2Ted
e 50 ~for all e ; d of frozen DOF!
Ak2Ak

e50 (k51,...,r )
p2pe50
w
n
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e
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o

a
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translational degrees of freedom. In this regard, it is kno
from statistical thermodynamics that the volume depende
of energy and entropy appears only in the contributions
the translational (d51) degrees of freedom while all th
available models of internal (d.1) degrees of freedom yield
volume-independent contributions. Thus, in the particu
circumstance in which the translational degrees of freed
are not energetically frozen, the column matrix]b f/]V van-
ishes identically and the Jacobian~98! becomes block-
diagonal withb52 independent blocks

~104!

Consequently, other two equivalent potentials appear, in
dition to the potential~99!, from the selection of the top-lef
and right-bottom blocks of the Jacobian~104!. These poten-
tials and their associated constraints are listed in Table I

The identification of the equivalent thermodynamic pote
tials generated by Legendre transforming the entropy~11!
turns out to be a more simplified task because the fro
energies@Eq. ~92!# belong to the set of the independent sta
parameters in the entropic formulation. Thus the energ
freezing constraints~92! must be retained as such

bed5Ued2Ued
a 50

for all e;d of frozen degrees of freedom only.
~105!

They supplement the prescription of the volume@Eq. ~69!#

bV5V2Va50 ~106!
n
ce
f

r
m

d-

-

n

ic

and the prescription of the energy@Eq. ~80!#, which, consis-
tently with the energetic freezing enforced by Eq.~105!, can
be adapted to read

bU5(
e,d

nfUed2S Ua2(
e,d

fUed
a D 50. ~107!

In Eq. ~107!, the superscripts nf and f applied to the symb
(e,d indicate that the corresponding summations are
tended to, respectively, nonfrozen and frozen degrees of f
dom. The quantity in parentheses represents physically
energy that is available for redistribution among the nonf
zen degrees of freedom. Thec521(e l̄ e constraints~105!–
~107! involve all the energiesU and the volumeV (t
5(e l̄ e11); the progress variablesj are unconstrained in
this formulation. The Jacobian of the constraints~105!–~107!
presents the structure

~108!

In Eq. ~108!, Uf and Unf are the arrays of, respectively, th
(e l̄ e energies of the frozen degrees of freedom, i.e., the
ergies appearing in the constraints~105!, and the (e( l e

2 l̄ e) energies of the nonfrozen degrees of freedom, i.e.,
energies occurring only in the constraint~107!. The central
block is composed by the unit matrix]bf/]Uf; the frame
around the digit 1 serves to emphasize that each position
its diagonal constitutes an independent block of the Jaco
~108!. The total number of independent blocks is thusb52
1(e l̄ e and the number of equivalent thermodynamic pote
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TABLE IV. Some representative equivalent thermodynamic potentials, and associated constraints, generated by Legendre tra
the entropy~11! in the presence of energetic freezing of some degrees of freedom~DOF!.

Blocks selected
from diagonal of
Jacobian~108! Potential Constraints

top left wnf5S2(
e,d

nf
1

Ted
Ued

1

Ted
2

1

Te 50

~for all e ; d of nonfrozen DOF!
Ued2Ued

a 50 ~for all e ; d of frozen DOF!
V2Va50

central wf5S2(
e,d

f
1

Ted
Ued (

e,d

nf Ued2S Ua2(
e,d

f Ued
a D 50

1

Ted
2

1

Ted
e 50

~for all e ; d of frozen DOF!
V2Va50

top left
central

w5S2(
e,d

1

Ted
Ued

1

Ted
2

1

Te50

~for all e ; d of nonfrozen DOF!

1

Ted
2

1

Ted
e 50

~for all e ; d of frozen DOF!

V2Va50

bottom right F5S2(
e,d

ped

Ted
V (

e,d

nf Ued2S Ua2(
e,d

f Ued
a D 50

Ued2Ued
a 50 ~for all e ; d of frozen DOF!

(
e,d

ped

Ted
2S(

e,d

ped

Ted
De

50

top left
bottom right

Cnf5S2(
e,d

nf
1

Ted
Ued2(

e,d

ped

Ted
V

1

Ted
2

1

Te 50

~for all e ; d of nonfrozen DOF!
Ued2Ued

a 50 ~for all e ; d of frozen DOF!

(
e,d

ped

Ted
2S(

e,d

ped

Ted
De

50

central
bottom right Cf5S2(

e,d

f
1

Ted
Ued2(

e,d

ped

Ted
V (

e,d

nf Ued2S Ua2(
e,d

f Ued
a D 50

1

Ted
2

1

Ted
e 50

~for all e ; d of frozen DOF!

(
e,d

ped

Ted
2S (

e,d

ped

Ted
D e

50

top left
central

bottom right

C5S2(
e,d

1

Ted
Ued2(

e,d

ped

Ted
V

1

Ted
2

1

Te 50

~for all e ; d of nonfrozen DOF!

1

Ted
2

1

Ted
e 50

~for all e ; d of frozen DOF!

(
e,d

ped

Ted
2S (

e,d

ped

Ted
D e

50
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tials amount to 2(21(e l
¯
e)21. The most representative ones a

listed in Table IV together with their associated constrain
The structure of the Jacobians~98! and ~104! denies the

equivalence property to Helmholtz and Gibbs-like potenti
while the simultaneous selection of the top-left and cen
blocks of the Jacobian~108! grants that property to the gen
eralized free energy~2w! of van de Sanden and co-worke
@5,6#. Thus the application of the selection method describ
in Sec. IV B reaffirms partially the findings of Ref.@5#
reached via arguments of classical thermodynamics. At
same time, however, it outlines the incorrectness of attach
the claimed attribute of generality to van de Sanden’s th
modynamic function because it puts in evidence that suc
function ~a! is not the sole potential that can be used and~b!
inherits the attribute of equivalence from the existence of
energetic freezing constraints. Relatively to the latter po
constraining circumstances, for example, entropic freez
@13#, cannot be excluded in which the generalized free
ergy loses the equivalence property.

V. CONCLUSIONS

Thermodynamic equilibria settling in multitemperatu
gas mixtures have been observed in engineering applica
and can be characterized quantitatively in a conceptu
straightforward manner within the framework of the axiom
atics thermodynamics initiated by Gibbs@16# and brought to
the actual level of conceptual clarity by Tisza@14#, Callen
@15#, and Napolitano@17#.

The application of the general principle of energy min
mization and entropy maximization leads unambiguously
the correct equilibrium equations if it is supplemented w
e

-
w

e

th
o
in

er
.

s
l

d

e
g

r-
a

e
t,
g
-

ns
ly

o

the adequate recognition of the importance of the role pla
by the physical constraints imposed on the gas mixture.
most relevant feature of multitemperature equilibria is th
the equilibrium equations are not unique but their ma
ematical form is established by the kind of internal co
straints. This feature resolves and rules out the debate in
literature concerned with the existence of a generalized
of mass action. The debate appears to be moot becau
arises from comparing multitemperature equilibria that c
respond to different constraining circumstances.

The equivalence between energy and entropy expresse
the equilibrium principle is enforced by rigorous mathema
cal proof. Conversely, not all the thermodynamic potenti
possess the equivalence property; it is the kind of inter
constraints that grants such an attribute to a subset of th
The selection method described in Sec. IV B permits one
single out the equivalent potentials according to the speci
internal constraints. The application of the selection pro
dure to the case in which multitemperature mixtures red
to single-temperature ones reconfirms results@Eqs.~24! and
~28!# firmly established in thermodynamics.

Finally, it would be interesting to investigate if and ho
the role of the internal constraints materializes in the ir
versible thermodynamics approach to the multitempera
equilibrium problem and whether or not the same, or at le
concording, conclusions obtained in the axiomatic thermo
namics approach could be arrived at. This aspect, howe
has not been considered in this study.
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